Greta Thunberg is Seeking a Climate Change Solution

Here it is! It is called the Carbon Cycle.

Each person, each family, can solve this crisis separately.

Each family currently buys and burns Fossil Fuels to heat their homes, where they now have a "Carbon Footprint" of maybe 15 tons each winter. If a few thousand or million or billion people Stop burning Fossil Fuels to heat their homes, and instead decide to use the far more natural Carbon Cycle instead, then, as individuals, we can gradually or rapidly totally solve the climate change crisis!

Greta Thunberg can teach her followers to (collectively) eliminate more than two billion tons of Climate Change this year (maybe more!)

Each family (or business) would only need to invest a maximum of $200 and part of a Saturday of simple work, to then be able to save $2,000 every year to then never again have to pay even a dime for Fossil Fuels for winter warming of their home or building and hot water, forever! After I did this in 2007, I have already saved more than $26,000 in home heating bills in the following 13 years. I have also already personally eliminated my sending 195 tons of chemically new carbon dioxide up into the atmosphere. In these 13 years, I have provided the construction instructions (linked below, for free) to at least 9,400 families who are now likely to be using this method of eliminating their own Climate Change footprints.

For about two centuries, human society has dug up carbon molecules which have been deep underground for millions of years (which we call Fossil Fuels, coal, petroleum and natural gas), and oxidizes (burns) them to produce all the energy our civilization relies on. That oxidation process creates billions of tons of chemically new carbon dioxide which enters our atmosphere. We call that Global Warming or Climate Change, and the Carbon Footprint of 15 to 50 tons of new carbon dioxide which each of us individuals adds to the atmosphere each year.

Greta can teach her millions of followers far better ways to produce the energy they want to use.     Instead of creating astounding amounts of new carbon dioxide due to burning Fossil Fuels, she can teach everyone to instead use naturally decomposing carbon molecules from the Carbon Cycle to produce the heat and power and electricity and transportation they all want to use.

Greta Thunberg has the Right Idea, but she is young and not yet a scientist

I am a scientist, who has been doing this for the past 13 years and knows how Greta can accomplish doing this. Just me, one person, has already eliminated more than 195 tons of Climate Change!

A 17-year-old kid can do that? YUP! And THIS year!

You now probably pay some giant utility corporation $2,000 each winter for Fossil Fuels to burn in a central furnace to heat your home. You have to burn (oxidize) that Fossil Fuel to create 15 tons of new carbon dioxide to send up into the atmosphere to cause global warming.     Instead, you could let sawdust or used coffee grounds or shredded junk mail or corncobs or a bale of hay or hundreds of other natural organic materials created by sunlight to naturally decompose (no fire!) to heat your home for free.   My personal favorite, though, is to use cut lawn grass to heat my home since I save and store so much free cut lawn grass from my summer mowing.

Since there are 75,000,000 American families, and this approach could simply eliminate each of us adding 15 tons of carbon dioxide every winter, we Americans could therefore (collectively) easily eliminate more than one billion tons of global warming (15 tons each times 75 million of us) every winter. Nearly all the businesses and factories and offices and stores could do the same for another billion tons of global warming eliminated. In Europe, they could do the same to eliminate another two billion tons of global warming, every year!

Prior to 2007, I paid around $2,000 every winter to heat my fairly large 11-room home near Chicago, Illinois, USA, to a giant utillity Corporation, for Fossil Fuels. By burning (oxidizing) their Fossil Fuels to heat my home, I was also contributing a "carbon footprint" of creating and then emitting about 13.75 tons of new carbon dioxide into the Earth's atmosphere, every winter.

When any of those vicious old men attack Greta for this project, I know she will remain quiet and let them talk, but then she might smile at them! After a suitable pause, I hope Greta could respond to make it clear that her suggestions were meant for her friends who were listening. Continuing her smiling at the attacker, she could explain that she would not want to interfere with him continuing to pay $2,000 every winter to heat his home with Fossil Fuels, as he clearly can afford to spend $30,000 for Fossil Fuels over the next 15 years. Greta might then again look out over her audience and suggest that some of their families might appreciate saving that $30,000 for a family College Fund? (massive applause and cheering should follow!)

These Fossil Fuels were organic materials, carbon molecules, that had been buried deep inside the Earth for millions of years, as coal or petroleum or natural gas. But when I burned (oxidized) those Fossil Fuel materials now (to heat my home) I released all that 15 tons of new carbon dioxide into the atmosphere (which had all been safely sequestered inside the Earth before I came along with my checkbook).

I built a simple device in early 2007, and used it for the next thirteen winters to easily heat my house, far warmer than I ever dared to have it when I was burning their Fossil Fuels. I guess I am sort of a "beach person" who always likes to wear a tee shirt and shorts no matter how cold the Chicago winter gets in February. So I love to now be able to keep my house at around 78°F or 79°F (or 26°C), where that extra coziness never cost me a dime! I avoided creating and sending 195 tons of global warming up into the atmosphere. Not bad for one person!

What is the "secret" of my insight? It is in not burning any Fossil Fuels! It is simply "mowing my lawn"! When all those blades of grass grow, they absorb a bunch of solar energy in the process of photosynthesis, 170,000,000 Btus of solar energy (per year, per acre). After I chop all their heads off (!) with my lawnmower, that energy is still in all those many blades of cut grass (as chemical energy) due to the Law of Conservation of Energy. As the grass blades later naturally decompose they release all (100% of) that enormous amount of (chemical) (heat) energy. The (simple) device I invented just captures most of that heat that comes out of all those cut blades of grass, as they all naturally decompose.

By not burning any Fossil Fuels, I do not (chemically) create tons of carbon dioxide, zero!

And it is an enormous amount of energy which I capture! Any acre of plants which grow due to Photosynthesis absorbs about 170,000,000 Btu of the Sun's heat during a year. When I watched the months of all those organic materials naturally decomposing (and therefore disappearing) in my yard, I realized something important. All those 170,000,000 Btus of (chemical) energy in all those grass blades and Autumn leaves have to still exist! They must all get released during those months of natural decomposition.

Since my fairly large house only requires about 45,000,000 Btu of heat during an entire winter, I have plenty of available local natural heat! (and it is all for free!)

I also realized that there are 75,000,000 other homeowners in the United States, and most of them have to also buy Fossil Fuels every winter to keep their homes warm. If they each also created and sent 15 tons of (new) carbon dioxide up into the atmosphere every winter, that is 15 * 75,000,000 or 1,125,000,000 tons of new carbon dioxide we are collectively creating and sending up into the atmosphere (every winter) from Fossil Fuels that should have been able to stay sequestered deep inside the Earth! Just by heating our homes using Fossil Fuels, we are now sending more than a billion tons of (brand new) carbon dioxide up into our atmosphere every year.

By the way, nearly every business and factory and store and office also can use this same technique to eliminate another billion tons of Global Warming every winter!

If we all simply decide to trust the Carbon Cycle of science and heat our homes and businesses with decomposing cut lawn grass instead, rather quickly, simply and easily, we could eliminate several billion tons of Global Warming, every year! (counting a couple billion more tons due to Europe's efforts, plus others.)

And just think if Greta "gets serious" and decides to get India and China and Russia and Brazil to participate?

OK! "I" do not happen to have "millions of followers!"

But Greta Thunberg has amassed many millions of followers, in just the one year that she has decided to "make a statement" about how serious Global Warming is regarding "modern kids even ever having any chance of growing old!"

So I realized that I needed to give this Technology to Greta Thunberg, for her to (simply) explain to all her millions of young followers to ask them to each explain to their parents the importance of them changing to use the cut lawn grass and fallen autumn leaves to heat their homes. It should be an "easy sell" as their parents should love not having to pay $2,000 every winter to keep their home cozy! Maybe the child might point out that the parents might then now have an extra $2,000 to buy toys and clothes for the kids? Or maybe save that money to save for later College Fund??? This needed device can be built with only about $100 or $200 of new materials from Home Depot, and it could even be built for free of surplus materials. A win, win, win, win, win situation, with the Earth being the greatest winner in this effort!

If you have been paying attention, some multi-billionaire corporations (including Exxon-Mobil) have been bragging about their efforts to do similar things regarding algae and bamboo. Maybe they should listen to Greta! IF they are successful, they hope to grow enormous amounts of algae and bamboo to use to make the electricity and other energy that our societies rely on (mostly so they can get billions of new dollars by selling their energy supplies to people like us!) Do you see the humor in that they are spending billions of dollars in trying to develop (one application of) just what Greta is already promoting for us simple people to use? Those mega-corporations are already concentrating on amassing their algae into Thermoelectric Converters (known as the Seebeck Effect, invented 200 years ago), to make electricity. We are simply noting here that huge piles of cut lawn grass and leaves and sawdust could similarly be fed into Seebeck devices to make Green electricity as described below.

HeatGreen - A Non-Fossil-Fueled Home Heating Furnace System

For as little as $100 total investment!

You probably pay someone to haul away and dispose of the cut lawn grass and the autumn leaves that you bag up. I don't do that! I save all that "lawn debris" and replace more than $3 of my house winter heating bills with each such bag! (I am even "willing" to haul away the bags of grass that neighbors put on the curb!)

I have a simple experiment for you! Once you mow your lawn, save enough grass to fill one standard garbage bag with the cut lawn grass, and tie it closed. Then wait about three hours, open the bag and stick your hand deep inside it, preparing to jerk it out when you burn your hand with the heat! Until you actually do this, you will not believe this system works, but once you burn your hand from self-heated lawn grass, you will understand!

Some basic facts of nature and science have virtually always been nearly completely neglected! Plants grow everywhere! We know that virtually all of them grow by a process called Photosynthesis. This requires and absorbs sunlight. Science knows that about 9,000 Btus or 2,600 Watt-hours of sunlight gets absorbed to form each pound of virtually any type of plant material. There is a universal law of science called the Conservation of Energy. This means that every weed and leaf and blade of grass contains a lot of (chemical) energy which all necessarily has to be released when that piece of organic material later dies and decomposes back into water vapor and carbon dioxide.

This concept and system is simply based on you waiting there for organic material to decompose, in order to collect the energy (heat) which is naturally given off! This might seem like it must be an irrelevant amount of energy, but it turns out to be an incredible amount!

Another interesting fact is that all of the energy gets released during that natural decomposition, where it is a process with 100% efficiency!

How it Works

Find 30 pounds (13 kg) of cut lawn grass, weeds, dead leaves, etc. Each pound of that organic matter took about 9,000 Btus of solar energy to grow, so that 270.000 Btus of energy is still in there! This will release the 270,000 Btus in the process of decomposition. All it needs to decompose, naturally, is about a gallon of water and some air (oxygen), and it will all eventually disappear (over a few months). You can speed this natural decomposition up!

Stir the material up every once in a while, with the water nearby, to make sure that every Glucose cell has available dampness at all times. Also, the stirring helps make sure that every cell has access to the oxygen that it needs. You could do this "by hand" every few hours, but putting the organic material, the water and the air inside a "tumbler" ensures that everything works most efficiently.

It turns out that either of two common types of bacteria speed up this process. Naturally, a type called Mesophilic is always around so that Natural decomposition occurs, over a period of weeks or months. But if you surround your tumbling chamber with really good standard house insulation (R-20), you can trap some of the heat the process creates, inside the tumbling chamber, and you can pretty easily get it warmer than 125°F in there, and if so, a far better type of bacteria, called Thermophilic, takes over. Then everything happens about ten times faster! And then, all you have to do is sit back and enjoy the heat produced, as long as you add more organic material and water from time to time!

This small amount of cut lawn grass or weeds can produce enough heat to fully heat a large room in a cold climate for 24 hours! Or it can produce enough heat to completely heat a large house for about 8 hours.

When I mow my grass, I sometimes get around 200 pounds of grass clippings (in 7 bags). Some of that is water but at 9,000 Btu/pound, that is around 1,200,000 Btus of heat energy which will be given off when it decomposes. This is a lot! On the coldest February days in Chicago, my large house loses less than that amount per two really cold days! It also could and can provide all the house's heat for half the entire month of March or October! Put another way, you can think of every large garbage bag of cut grass in terms of the three dollars of Fossil Fuel heating fuel you will otherwise buy! I can tell you that it makes a chore like mowing a lot more fun when you see some bags which will eliminate $20 of winter heating bills! In the Fall, my yard produces about 26 bags of leaves, roughly 780 pounds which can produce around another 5 million Btus of heat for my house.

If the yard around your house is fairly large, an acre, then a really amazing fact exists which no one seems to have ever noticed before! In a given calendar year, the (9 tons of) fallen autumn leaves, cut grass particles and other dead organic materials which had grown on that acre due to Photosynthesis, will decay. You knew that! What you didn't know is that the process of that natural decay or decomposition gives off heat in the process, an amazing amount, around 170,000,000 Btus or 50 MegaWatt-hours of energy! (If your yard is smaller, 1/4 acre, then around 40,000,000 Btus or 12 MWh of heat energy is released during the year.) This becomes really interesting when you note that if you live in a temperate climate like around Chicago, in a medium-sized house, then you likely pay $2,000 to buy heating oil or natural gas or electricity to heat your home each winter, because the house and its insulation and windows and doors will lose around 45,000,000 Btus or 13 MWh of heat during the entire winter.


Sure! But you are not willing to believe that so much energy could be available from your yard! Let's examine the facts. Let's say that your yard is modest in size, sixty feet by one hundred feet (which is therefore 6,000 square feet). And we know that a year contains 8766 hours. So let's divide the 27 million Btus that we say is given off each year (because your yard is small and a fraction of an acre discussed above) by both of these numbers. We get 0.51 Btu/square foot per hour as the average amount of heat given off by decomposing material in your yard! Is there any wonder that you have never noticed such a tiny amount of heat? (A person's body gives off around 400 Btu/hr or more!) It seems like an insignificant amount of heat, but the total of the entire yard is enough to heat your whole house all winter!

There is no fire created so this is far safer than conventional furnaces, which burn Fossil Fuels to create 3,800°F (2,100°C) fire just to provide the 120°F (50°C) warm air you enjoy in your house! This system uses natural decomposition of decaying organic lawn materials to easily produce that desired 120°F (50°C) warm air directly! Actually, that heat is always created during natural decay, but no one has ever collected it for useful purposes. Right now, that heat is being given off, outside your window, over many months and over the large area of your yard, where the average heat given off is only around 1/2 of a Btu/hr per square foot, so no one seems to have even noticed the available heat before! Doesn't it make far more sense to simply collect this naturally occurring and immediately available heat, which does not cost you anything and which is already sitting there outside your window? And it does not consume precious earth resources or produce the environmental consequences of burning Fossil Fuels. It uses absolutely Green materials, which are going to decay naturally anyway, to entirely heat your home and hot water!

By enclosing the decomposing organic materials inside a well-insulated chamber, and by providing appropriate water and air so the bacteria which do the decomposition are happiest, this heat energy can be captured, to then either heat your home's air or your hot water, or both. I realize that no one believes that "stupid grass cuttings" can ever represent such a heating source, but I can assure you that in the seven years I have used my device to decompose weeds and grass and leaves to heat my house, there have been several times when I have stuck my hand inside the chamber, without any glove, and my hand got Second Degree Burns from the 140°F decomposing material inside. Sometimes, even I am not too smart, as I know better and I also remember previous times I have accidentally done that! Duh!

First placed on the Internet in March 2007

Prototype unit first built March 2007, which then fully heated an entire large house in Chicago winters from 2007-2014

After I invented my JUCA wood-burning stove in 1973, there were around 75 different people who saw me selling $11 million of woodstoves and they tried to steal my invention to get rich. But none of them were talented enough to actually build any safe and effective woodburners!

Here is a much simpler invention that I want to give away, and people could get far more disgustingly rich if they wanted! It is now mid-2014 and we know that Russia has entirely shut off the natural gas supply to the 45,000,000 people in the Ukraine. This coming winter, the Ukrainian people will have to beg Russia to provide natural gas so they can keep their families from freezing to death! But for the past seven winters I have been very cozy warm in my fairly large house near Chicago (a climate comparable to Ukraine) simply using the cut lawn grass from my mowing. There is no doubt in my mind that ten million Ukrainian families desperately need to get one of these HG3a devices. And if someone decided to mass produce the devices in the Ukraine, and possibly sell ten million of them at US$200 each, shouldn't an intelligent businessperson see that they might sell two billion dollars worth of products, in just a few months, just in the Ukraine? And mass producing the fairly simple devices can reduce production cost below $100 each, so wouldn't that enable a money-focused businessperson to pile up a billion dollars in net profits in just a few months? My experience with JUCA was that my ex-wife loved all the money we made but for me, the large scale of the business was just stressful, so I have absolutely no interest in pursuing money in Ukraine. But I do want to find some way to keep millions of Ukrainian kids and families from freezing to death this winter, and I am willing to let someone else get rich to accomplish that! Alternatively, if someone shows 10,000 Ukrainian handymen that they could each make nice money in each building and selling 1,000 HG3a units, locally, I'd like that even better!

I happen to be a really spoiled American, and I happen to like to keep my house extremely warm in winter. So, for the past seven winters, I have used completely standard wall thermostats to keep my rooms at a rather constant 78°F or 79°F (or 26°C). Most people would probably be happy keeping their homes at 72°F or even 68°F or whatever temperature they personally like. The only real difference is that my especially warm house had more lawn debris decomposing each hour and so I had to re-load the HG 3a a little more often! It was all free so I did not really see any downside to that, in being able to spend each winter in tee shirts!

The instructions to build one version are in a separate web-page at Alternative Green Furnace - Non-Fossil-Fueled - Construction High-Performance HeatGreen Home Heating System Version 3a public3/globalzl.html

People commonly confuse this system with the long known process of Composting, which is known to create some warmth. It is actually rather different, being a far more sophisticated version of that basic idea. Where Composting (and natural decay) generally relies on Mesophilic bacteria to biochemically decompose some organic materials, this system generally encourages a far more effective Thermophilic bacteria to do it many times faster, many times more efficiently, and which produces far more warmth. We designed and Engineered a system which then maximizes overall performance. Where Composting which is done well can have an overall energy efficiency of around 50%, and conventional fossil-fuel-fired furnaces commonly can have around 80% overall energy efficiency, this system can commonly convert around 94% of the lawn debris into wonderful heat for your house! (That 94% actually disappears, into becoming the heat energy you want, along with water vapor and carbon dioxide that had been initially used to create the plants by photosynthesis!) So, in addition to being Green, it also happens to have higher overall efficiency than virtually any other heating system!

All the plants that grow in the USA capture into their structures a total of 121 * 1012 kWh of solar energy every year. None of that energy can disappear, as Helmholtz and others told us long ago, the Conservation of Energy. And so all that energy is still in the plants after they die! It all then has to get released during the decomposition and rotting of the plants (and animals). The entire consumption of all forms of energy in the USA (2008) is 28.3 * 1012 kWh every year. See? If we could or would efficiently use these American supplies of energy, we would clearly not need any imported (Fossil Fuel) energy from any other country! We would not even need to ever burn any coal or natural gas or petroleum dug up under the USA! In fact, if we became efficient at collecting and capturing all this available energy, we actually would have more than four times as much energy as we currently consume Nationally!

See the dark humor in this? We simply neglect and waste the 121 trillion kiloWatt-hours of energy which is given off in the USA by all that decomposing plant material each year! At the same time, we pay through the nose to get foreign countries to extract petroleum and natural gas which we then pay them for! And, we have become terribly dependent on many countries which really don't seem to like us! No one has even ever tried to capture or use this easily available energy! (Until now, 2007!) No, we could not collect and recover all of that energy. But we spend our time whining about all the imported oil and imported natural gas and imported uranium that we required to support our life-styles, where we already have easily-available decaying materials which already produce several times more total energy and power than we now use and waste! I see that as wonderful dark humor! And it is actually just solar energy!

So, look out your window now! That is all stored solar energy (due to Photosynthesis), just a few steps away from you! Duhhh?

You can even check this out very easily! You need an empty garbage can, either metal or plastic, and fairly big. Just fill it with cut lawn grass after you mow your lawn or a neighbor does. If you fill it with fresh cut grass (that is, moist) just dump in two or three gallons of any available water. If the grass is drier, you may need to use a shovel or pitchfork to mix that water into the grass. Get a remote thermometer, around $13 from a local big box store, so you can monitor the internal temperature in the garbage can. You then have two choices for your experiment! If you simply put the lid on, by about a day later, you will find that the grass inside the can has risen to about 95°F or 100°F. The Mesophilic bacteria that do this are not remotely fussy and you did not have to do anything to see this result. Your other choice is to do the same but to wrap and cover the can with R-19 fiberglass house insulation, and if possible, also put the can on top of at least two inches thick of blue foam house insulation. This will do the same heating but the insulation keeps more heat inside. You will see much higher temperatures inside the can, certainly 120°F or more the next day. If you can get the inside temperature up above 125°F (fairly easy to do), an entirely different type of bacteria take over the decomposition, and they are voracious little monsters! Once the temperature passes about 125°F, these Thermophilic (heat-loving) bacteria take over, they decompose the grass (and virtually all other organic material) around ten times faster! So the temperature suddenly rises up to 130 or 140 or 150°F. Around ten times as much heat is created!

In both cases, the desired operation is a form of aerobic decomposition, where oxygen (from the air) is needed and used up. The oxygen in the air inside the garbage can gets used up so after a few days. You would need to let more air in, to continue the heat production, or else the Mesophilic bacteria take over again in a form of anaerobic decomposition. If that happens due to lack of sufficient oxygen, in both cases, the temperature inside would start to drop, and everything would slow down again. The devices described in these web-pages ensure that the bacteria always has a good supply of warmth, water and oxygen, so you get reliable heating from the device.

Benefits of this (home built) HG 3a system include:

  • Never pay heating bills again!
  • Great for the Environment! Absolutely Green!
  • No burning, no fire, no flame at all!
  • Never use Fossil Fuels again!
  • Build it yourself for around $200!
  • Step-by-step Instructions provided.
  • A house in a northern climate may lose 45,000 Btu/hr on a really cold night. The HeatGreen 3a device has shown that it can supply 90,000 Btu/hr! It can provide 45,000 Btu/hr fairly easily for a warm and cozy house!
  • There are even side benefits possible. If the warmth and water vapor and carbon dioxide produced by an HG 3a is sent into a small greenhouse, government research (1995) confirms that the greenhouse can then produce five times as much food, and of better quality and taste! A discussion about this is below.
  • There are known devices based on the Seebeck Effect (invented 200 years ago) which are thermoelectric converters, which use heat to produce electricity directly by semiconductor devices. Existing thermoelectric generators need rather high temperatures to drive the semiconductor devices, but some logical improvements in those devices seem likely to be able to produce electricity from low-grade heat of 150°F, which an HG 3a can make in great abundance. An HG 3a device which is producing 45,000 Btu/hr of heat energy can also be described as being about 12,000 Watts. Seems like a really interesting possibility for producing and supplying the 1,000 Watts or 2,000 Watts of electricity that most American families now use! note 7
  • The public is significantly deceived about how wonderful that Utility-supplied alternative energy will be. The fact that giant Corporations are so focused on being involved in solar or wind or algae or geothermal sources of electricity should tell you something, that they expect to make billions of dollars of profits from such efforts! The News Reports and advertising and promotion always make it sound like they are investing in such research because they are so wonderful regarding caring about customers, but the reality is that they really just want to try to maintain the monopoly that they currently have regarding supplying electricity and heating fuels and gasoline, so their billions of annual profits can continue. As long as few people can and will make their own supplies, their future profits are secure. But a recent (4/25/2012) news report out of Japan provides useful information for us consumers. Remember that you currently probably pay about 8 cents to 10 cents per kiloWatt-hour for your electricity, plus a significant amount for "delivery costs" and a variety of taxes to get your actual cost up to around 15 cents per kWh. And that the wholesale cost of the electricity is even cheaper between providers and Utility companies, commonly in the range of 5 cents per kWh. So the new News Report from Japan should get your attention! They mention that the Japanese government now expects the (wholesale) cost of electricity to be as follows, which figures to happen very soon in Japan due to all their nuclear power plants now being closed down after the tsunami of 2011: Electricity from solar will be 52 cents per kWh; electricity from wind (tower turbines) will be 28 cents per kWh; and electricity from geothermal (due to Japan being in an earthquake zone in the Ring of Fire) will be 34 cents per kWh. Add in the delivery charges and the taxes and we can see this represents a ten-fold increase in the cost of electricity!
  • These web-pages are intended to enable each person to be able to provide their own electricity and other Utilities, whether from solar or wind or decomposing organic materials or from other sources, where the cost then drops to zero cents per kWh. We see solid logic in this, as long as the initial cost is not too high and there is not massive labor involved in using such devices to produce electricity or heat or pure water or refrigeration or air conditioning or other important utilities.

This presentation was first placed on the Internet in March 2007. At least 311,000 visitors have read about the HG concept since then. Since we don't charge for this information, we have no way of knowing when people actually build HG units, but we believe that several thousand have been built so far, in at least ten different countries.

Public Service
Self-Sufficiency - Many Suggestions

Environmental Subjects

Scientific Subjects

Advanced Physics

Social Subjects

Religious Subjects

Public Services Home Page

Main Menu
Rotating Five-foot diameter HG 3a showing two digital thermometers, two air ducts and two water pipes, axle shaft, feed door opening, and pink heat insulation (built in May 2007 of $200 new materials). This is a Normal-sized Rotating Five-foot diameter HG 3a (40 cubic foot capacity or 450 pounds) showing two digital thermometers (internal air and water), two (white) air ducts (in and out) and two (black) hot water heating pipes (in and out), axle shaft, feed door opening (without its door and wide open here) , and four layers of conventional pink (R-20) heat insulation. Maximum heat production is about 4,000,000 Btus total at about 90,000 Btu/hr max or about 45,000 Btu/hr for about three days at a heavy load. In milder weather, it can provide a constant 25,000 Btu/hr for about a week per loading. (built in May 2007 of $200 new materials).

Rather small Rotating Three-foot diameter HG 3a (built in 2009). This small unit can only contain about 20% as much organic material as the standard-sized HG 3a shown above, so it can only heat one or two rooms for a while. Rather small Rotating Three-foot diameter HG 3a (someone built in 2009). This small unit can only contain about 15% as much organic material as the standard-sized HG 3a shown above, and it's maximum heat production is only about 1/4 of that of the standard-sized HG 3a, or about 20,000 Btu/hr, for a little more than a full day per load, so it can only realistically heat one or two rooms. You can see the motor and gear reduction box they used to "tumble" the chamber, like a slower version of what a Clothes Dryer does.

Better than Biogas!

People are beginning to become aware of their "carbon footprint" and the devastating effects that we individually and collectively are having to alter the Earth's climate and atmosphere. Global Warming and Climate Change have become the latest buzzwords regarding social behaviors. People clearly do not yet realize how critical and urgent this all is, and that it is actually likely to already be too late note 42, but it is at least good that people are starting to realize the horrendous damage our modern society and lifestyles has caused. Will that cause us to greatly change our behavior patterns? Sadly, probably not. However, here is something that you can do, which involves extremely little hardship or alteration of the modern lifestyle, but which can do a great deal of good for the Earth and its climate. You will also save a lot of money in the process!

You may want to read this very carefully! Why? Because if each of us 75 million American families chooses to use this system to heat each of our homes and heat all of our domestic hot water, in a Grass Roots manner, we can accomplish impressive results!

We can each reduce our family's 45-ton Carbon dioxide footprint note 9 down by about 7 to 15 tons of carbon dioxide per year by using this sort of device to heat our homes and water! That means "we", on a Grass Roots level, can eliminate (75 million * 13 tons each) over 1,000,000,000 tons of actual carbon dioxide from the 5.498 billion tons (1998 figures for the US) of carbon dioxide emissions from the United States each year! This is about an immediate 20% National reduction from the roughly five billion total tons of carbon dioxide that the U.S. currently sends into the atmosphere (all due to burning Fossil Fuels). note 19 Isn't that both amazing and great? Politicians hope to reduce our National emissions by a few percent by the year 2050, but we citizens and homeowners could reduce it by 20% by next winter! (I like that!)

It seems likely that governments will love the fact that we can create that 20% total reduction in the United States' total carbon dioxide emission without needing a dime of any government's money or any money from any giant corporation! (I really like that! No "billions of dollars of our taxpayer money" are necessary; not even a dime!)

Some of us live in milder climates, but if we 75 million American families now average $1,500 for winter and hot water heating, then please note that "we" will collectively pay around $110 billion this winter, which goes to giant corporations and Mid-East countries. If we all build these inexpensive devices to heat our homes, then next winter, we could pay them zero! Would you like to be able to keep $1,500 in your pocket rather than giving it to giant oil corporations and Mid-East countries? I thought so! This should all appear as the ultimate of a win-win-win-win-win situation, except for those Mid-East countries and the Execs of those giant corporations!

By the way, we 75 million Americans currently average using up around 80 million Btus each of heating oil or natural gas each winter for heating our houses, and another 25 million Btus to heat our hot water. Multiplying, we are collectively are using around 6 quadrillion Btus and 2 quadrillion Btus or a total of 8 quadrillion Btus of Fossil heating Fuels. Noting that the U.S. imports around 26 quadrillion Btus of Fossil Fuels (mostly petroleum, around 70% of all the petroleum we use up in this country is imported) each year, our individual decisions to heat our homes at minimal cost even has more benefits, regarding substantially reducing our dependence of imported fuel supplies!

Described below are several very practical devices that you can make (with the instructions which are included), which will allow you to greatly reduce your contribution to Greenhouse Gases and Global Warming, while also saving you a lot of money, and even being absolutely Green! It can provide a method of entirely heating your home, to a comfort level that you have come to expect (or even warmer!), and with a simplicity and wall-thermostat ease that is also now expected, with potentially no cost and no usage of any Fossil Fuels ever again, to be absolutely Carbon Neutral.

In my own experiments in developing this system, I had results that certainly impressed me! For a fairly large four-bedroom home near Chicago, which is very old (originally built as a one-room schoolhouse in 1856!) and only partially insulated now, the first winter of using an HG 3a unit (2007-2008) resulted in only using around $198 worth of natural gas for the entire year. Much of that was used by the gas water heater during the summer months when I was not experimenting! But some also was used during times when I had taken the HG 3a apart to change something or test something! The next winter of use of the HG 3a unit resulted in around $192 worth of natural gas being consumed during the entire year. Again, most of that was used by the gas water heater during the summer months when I was not using the HG 3a unit, and it was also partly due to increases in the cost of natural gas. All in all, not bad! A house that used to require $1500 to $2000 consumption of natural gas each year has only used around 1/8 that much while I have been using the HG 3a (during the winter). It seems very likely that the consumption might drop to near zero if I would start to use the HG 3a all year!

Here is a "teaser" for you!

It is extremely likely that within 60 paces of you right now, there is a massive energy source which is absolutely free! It is on the scale of 67,000 horsepower-hours of (heat) energy! Or 50,000 kilowatt-hours (again, of heat energy). Or 170,000,000 Btus. That's an astounding amount of heat energy! It is totally free and it replenishes itself naturally every year! note 1

You probably collect and bag grass cuttings when you mow your lawn, as millions of others do. You call it Yard Waste! And you rake and bag leaves in the Fall. What if we told you that as all those leaves and cut grass blades decompose, they naturally give off heat. A lot of heat! In a single acre of lawn, forest or even weeds, the total amount of heat which is now being released (over about a six-month period of decomposition) is around that 170,000,000 Btus. That's an astonishing amount of heat energy, given that your medium-sized house in a cold climate probably has a total winter heat loss of around 50 million Btus and you use another 25 million Btus of fuel to heat your hot water! your innocent-looking yard has available an immense amount of absolutely free, natural and Green heat energy, which is now being constantly released by simple natural decomposition of organic materials. All this while you are paying billionaires in Saudi Arabia for heating oil??? Take a look out your window at your yard!

What if we now told you that every one of those bags of leaves or grass is therefore worth $3 or $4 or more to you? You probably now pay giant corporations around $2,000 every winter for Fossil Fuels to heat your home and water. Consider this: A 20-pound bag of any organic matter contains around 180,000 Btus of chemical energy, which was captured from sunlight by the photosynthesis of carbon dioxide and water vapor, and which will all necessarily be released as heat as the material naturally decomposes! We have Engineered a method of capturing a large portion of that released heat, to either heat your home or to heat your domestic hot water or both! You probably now pay at least $4 for heating oil or $3 for natural gas to create as much heat as one bag of that Yard Waste could easily provide. Do you still want to pay someone to haul those bags away? And, the biggest bonus of all, by eliminating your need for Fossil Fuels, you will be contributing toward solving the global warming catastrophe.

The only "down-side" is that quite a few such bags are needed! Yes, a single acre of land can provide it all, but that still is quite a few bags of grass and leaves and weeds! Each summer I collect about 180 bags of cut lawn grass. Each bag starts out at about 30 pounds with all the water in the wet grass. Each bag dries out to be about 20 pounds when I store it. So that's about 180 * 20 or 3600 pounds of material ready for my HG 3a unit. Some bags of Autumn leaves increases this to over two tons for each winter.

If you intend to entirely heat your medium-sized home, and it is in a cold northern US climate, 200 to 300 such (small) bags might be needed! But most or all of that can be collected from your own (large) yard, so nothing should have to be bought!

Other people might decide to buy around a hundred bales of straw or hay, and there are many other sources of such materials. Your neighbors probably now complain about having to pay to have bags of grass and leaves hauled away, and you could generously offer to help solve their problem!

Is this Biofuel? Is this Biogas?

Yes. No. We are seeing massive advertising by giant corporations about their efforts at establishing Biofuel and/or Biogas operations. What they are trying to do is very different from this, essentially a second-cousin. What they intend to do is also quite a bit less efficient than the concept and devices described here!

They have a vested interest in wanting to keep control of the source of the fuel that you need to heat your house and water! Their approach is to partially decompose organic materials (Biofuels) (in an anaerobic process). We want to totally decompose them! (in an aerobic process, which is far more efficient.) In our case, we are then able to capture virtually 100% of the heat that can get released by the decomposition. They actually allow around half of the decomposition process to occur with no attempt at capture of energy (and sometimes even require additional energy to be supplied to drive their processes.) In general, most Biogas processes must be done in anaerobic conditions (where there is not enough Oxygen present to completely decompose the organic materials. Why do they do that? Because many of the anaerobic processes result in Methane gas being produced. Methane gas is essentially identical to what people call Natural Gas. It has the advantages of being able to be compressed, stored, transported and saved for later, all good things. Our primary process is simply to produce all the heat that can be squeezed out of any organic materials, but we therefore concede NOT being easily able to store that heat.

But their approach causes, at best, only about 50% of the available energy to be converted into Methane. Our approach causes nearly 100% of the available energy to be converted into usable heat.

So our process and our devices are very different from what the giant corporations talk about as the future. We think that it is better to be capturing around twice the amount of energy, as long as we have fairly quick usage of that energy. The energy is produced at the location of need, rather than having to be trucked or piped from somewhere else. This does not interest the giant companies, as they want to have energy supplies being in products that they can sell! We agree that they have an advantage of talking about a fuel which can be used for many industrial processes and for vehicles.

The system and the devices we describe actually can be used to produce Methane gas, primarily by simply not allowing sufficient oxygen in to the bacteriafootnote so that they cannot do a complete job of decomposing the materials. Maybe that might become a useful variant regarding providing fuel for vehicles if a lot of CNG (compressed Natural Gas) vehicles start using the roads. For now, we feel it is better to focus on totally decomposing the organic materials to get every possible Btu of heat out of them!

IF the purpose is to heat a house or hot water, there seems no competition with our approach! Instead of using processing which only have around 50% efficiency, our approach gets essentially double that. Instead of creating a fuel which is burned to produce hot gases at around 3800°F, in order to heat air or water up to 120°F or 140°F, wasting a lot of heat in that process, we simply heat the air or water directly. Instead of requiring distant mining companies to extract Fossil Fuels from deep in the Earth, we use natural materials on your own lawn which will naturally decompose anyway. Without constantly having fire present inside furnaces or hot water heaters, there is no fire which ever exists in our approach, which is far safer. Instead of spending $1500 or $2000 every year to heat your house and hot water, you can collect free lawn debris from your own lawn!

We admit that there is convenience factor of paying some giant corporation to supply you with a pipeline full of heating oil or natural gas or of a lot of electricity for electric heating. In contrast, you must collect and store several tons of cut lawn grass and autumn leaves, and then carry it to put it into the device, an amount that is nearly comparable to the amount of firewood you might need to cut and store and carry if you intend to heat your house by burning wood.

The comfort level inside a house is essentially identical to that from a conventional central furnace, even using a wall thermostat to keep room temperatures exactly what you want them to be. Finally, by making use of a process which was gradually going to occur naturally anyway, the decomposition of grass, leaves, weeds and other organic debris, you are a lot more civicly responsible in not adding gases from burning Fossil Fuels to the Earth's biosphere.

We concede that if you have needs to smelt aluminum ore or to create steel, this process cannot produce the very high temperatures necessary for such industrial processes. We are merely pointing out that the needs of an average family can be excellently fulfilled by using the natural decomposition that we recommend.

Also, near the end of this presentation, there are some comments regarding a number of benefits that they cannot provide, and also some possibilities regarding potential vehicle fuel.

This is an overview presentation. If you wish to see the scientific and mathematical basis for these statements, please see the much more comprehensive version of this same page, at Alternative Green Furnace with no Fire - Non-Fossil-Fueled HeatGreen - A Simple, Non-Fossil-Fueled Home Heating Furnace public3/globalzc.html

You probably collect and bag grass cuttings when you mow your lawn, as millions of others do. You call it Yard Waste! And you rake and bag leaves in the Fall. What if we told you that as all those leaves and cut grass blades decompose, they naturally give off heat. A lot of heat! In a single acre of lawn, forest or even weeds, the total amount of heat which is now being released (over about a six-month period of decomposition) is around that 170,000,000 Btus. That's an astonishing amount of heat energy, given that your medium-sized house in a cold climate probably has a total winter heat loss of around 50 million Btus! Your innocent-looking yard has available an immense amount of absolutely free, natural and Green heat energy, which is now being constantly released by simple natural decomposition of organic materials. All this while you are paying billionaires in Saudi Arabia for heating oil??? Take a look out your window at your yard!

The General Reasoning

Extensive research done in 2005 and 2006 in examining the Global Warming issues discussed in the presentations linked above have brought to light some really interesting things!

info-a Here is a graph of one of the first careful scientific experiments I did on this concept, early in 2007. It truly impressed me, and I immediately recognized how amazing this concept is! Grass was mowed in the early afternoon on April 12th, when the outdoor temperature was around 80°F, and it was immediately dumped into a bin, which happened to be in my basement, which was then around 61°F. (all temperatures were measured accurate to 1/10 degree Fahrenheit). Insulation of R-20 was placed around (and under) the bin. I expected to see some rise in temperature, as I knew that Composting gets the central pile temperature up to over 100°F after a few weeks. I did not expect to see the temperature of the entire bin cross 100°F in just 9 hours, before midnight of that very same day!

You can see that the grass continued to rapidly rise in temperature, all because of lots of very active bacteriafootnote, and just 24 hours after I had dumped that newly-mown grass in the bin, the average temperature of the bin crossed 120°F! I still find that mind-blowing!

That particular experiment was intended to be a preliminary one, and no source of additional oxygen was provided, which is what caused the curve to start flattening out. Other than the naturally moist cut grass, only a handful of black dirt was tossed in, as a reliable source for bacteriafootnote, nothing else! In the modest bacteriafootnote activity that I had expected, I thought they would have plenty of oxygen for at least a few weeks. They used up most of the oxygen in the bin in a day and a half! Later experiments where a tube was added that supplies air (oxygen) show that the graph stays straight longer, and only then levels off in the 140°F to 150°F range. That leveling off is actually because that excess heat starts to kill off some of the bacteriafootnote doing the work, so I make a point of keeping the bin temperature under around 150°F.

Keep in mind that all the decaying organic matter laying around on Earth creates forty times all the energy that our world's modern society depends on from Fossil Fuels now. (and which will soon run out, in a few decades at most). note 40

In case it is not clear, this is a "carbon-neutral" situation. Plants live and grow, and remove 300 billion tons of carbon dioxide from the atmosphere every year, naturally, by photosynthesis, in forming the glucose and other organic molecules of life. When that material dies and decomposes, it completes the cycle, what is called the Carbon Cycle. note 17 Fossil Fuels cause a problem because they had removed their carbon dioxide from the atmosphere many millions of years ago. The fact is that we are now mining and pumping all the Fossil Fuels we can find, and then burning them at very high rates, that now releases huge amounts of carbon (dioxide) that had been trapped in those fuels for those millions of years. The carbon dioxide itself is not a problem! The fact that we are rapidly adding a lot of "new" carbon dioxide to the atmosphere is! The organic-decomposition-based concept here is entirely different, simply keeping the existing carbon in the biosphere and atmosphere in circulation. Totally natural and Carbon-neutral.

Those materials were going to decompose naturally anyway! We are just causing that natural process to occur where we can capture the heat it creates.

The HeatGreen Specifics

A mid-sized American home, in a cold climate, uses roughly 100 million Btus (100 MBtu) (actual chemical energy) of gas or heating oil each winter. Any homeowner in a cold climate knows that this is well over $1,500 in heating bills. If the house uses electric heat, it is better insulated, but still even has higher heating bills, often over $2,500 during a winter. note 41 We plan to entirely eliminate that cost to you, as well as then not causing any Global Warming due to the burning of that natural gas or oil nor in the making of that electricity. This is absolutely carbon-neutral and is a whole new level of being Green!

Of that home gas consumption, around 4/5 is toward heating the house with the other 1/5 going toward providing domestic hot water. We have provided a separate page regarding a version for only heating of hot water Alternative Green Water Heater - Non-Fossil-Fueled HeatGreen - A Simple and Non-Fossil-Fueled Water Heater (which you can make, which will also eliminate that $300 you spend every year for heating water!)

info-b It might be useful here to present a graph from another early experiment, also from April 2007. In this run, only leaves were used (no grass) and so it is to be expected that the bacterialfootnote activity would take longer to develop (for what farmers call Brown compost material, rather than Green). This particular experimental run was actually to compare the performance with and without the excellent insulation around the bin.

Notice that without the insulation, the bin temperature rises, but rather slowly. This is actually the situation resembling a conventional compost pile, where it takes months to get the center of the pile up to the most productive hotter temperatures. In six days, it only rose by about 3°F! With the insulation, we can see that the leaves rose by over 20°F, around seven times as fast.

The high level of insulation is therefore a critical component as to why this system works so amazingly well.

We are actually going to capture that heat, and even entirely focus on it! It turns out that it is the same chemical reaction heat we discussed at length in the previous presentations, specifically regarding the two-way photosynthesis and energy production processes. note 43

The Capability of This Concept

Say we arrange a big pile of dead plant (leaves, grasses, weeds, crop residues, straw, hay, corncobs, feed corn, sawdust, food scraps, etc) (and even animal) materials which is around ten feet square by eight feet high, or 800 cubic feet. (This is the size of the largest [Version 2] chamber that we are going to discuss below!) That material is not packed very well, so it is common that it only weighs around 20 pounds per cubic foot, or a total of 16,000 pounds of matter involved.

For reference sake, in case this sounds huge, it is approximately the total amount of plant growth (and decay) that occurs on a single acre of lawn, forest, cropland, meadow, or weeds, per year.

A quick estimate of the chemical energy in that pile of organic material is 7,000 (to 9,000) Btu/pound times 16,000 pounds or around 112,000,000 (to 144 million) Btus of chemical energy (which will eventually all be released as heat). Given that we have already discussed that a medium-sized house in a cold climate might have a total winter heat loss of 40 million Btus, we can see that this pile of material has plenty of available heat energy in it for the house for the winter!

This biggest Version (2) of this concept therefore can be loaded once in the Autumn to be able to entirely heat the whole house and hot water for an entire winter!

Note that we are really only considering the organic matter created each year by just one acre of lawn, field, forest or weeds. So even though the pile might seem large, it is easily locally available, and probably for free!

We therefore enable (Version 2) that entire pile to decompose, essentially naturally, over maybe six months (or faster), where the glucose (C6H12O6) oxidizes aerobically [chemically combines with oxygen from the air] ( the 6 O2 molecules) note 43 and therefore breaks down to create only molecules of water (H2O) and carbon dioxide (CO2) and a massive release of energy!

We Now Have a Plan!

All we have to do now is to make such a pile of organic material, provide it appropriate air/oxygen and water, and surround it with really good insulation so that we can capture all the heat that gets created! Simple!

HeatGreen 1 - A really big bag of stuff in your basement!

This Version seems ideal for remote Third World people who now have trouble getting sufficient heat to keep their families warm. A simple $20 standard Poly tarp can be the only significant component! The organic material can be piled up on such a tarp (which is on top of leaves or straw as insulation underneath) and then all the edges of the tarp lifted and tied together to seal everything inside what then becomes a big bag! More straw or leaves would then be piled around and over the bag as insulation to allow it to achieve the temperatures that the Thermophilic bacteriafootnote thrive in.

This is a very crude version of this concept. It does not have any wall thermostat control or other aspects of advanced nature. But it IS very simple and very cheap and easy to set up! Note that with the tarp size we describe here, around 1,500 pounds of organic matter can be amassed, which contains around 13 million Btus of chemical energy, and so it is big enough to entirely heat a whole American house for several weeks or a month (in many climates). For Third World families who live in small structures, this size bag can provide heat and hot water which they have never had access to before. Their actual heating needs might be small enough that an even smaller tarp might be sufficient for their needs.

This crude version has some requirements. The bag may need to be opened up at regular intervals, to provide the needed air/oxygen and to mix/stir the material. This second need can possibly be accomplished by moving aside the insulation and pushing on the bag to roll it over. The first need can be accomplished by adding at least two large-diameter pipes to be able to force fresh air into the bag and to allow the used air to leave. There are many different ways that this approach can be done, and in Third World applications, nearly all figure to be tried!

This same Version 1 can be used in any home, possibly in a basement location, to provide most or all of the heat a modern home would need. Get blue foam building insulation (for underneath the tarp/bag). You could get bundles of standard fiberglass home insulation of at least R-19 rating (for surrounding the tarp/bag and covering it).

Get a standard (plastic) tarp, either 16' square or 20' square, and place it centered on top of the stack of foam sheets. (around $30 cost) It should be a TARP (reinforced) and not just thin plastic sheeting, in order to reduce tearing and to last longer.

Get (a) around 40 bags of cut lawn grass and 40 bags of leaves (should be free); or (b) 15 to 25 standard bales of straw ( at around $2.50 each) or hay (at around $3 each); or (c) one of the giant round bales of straw or hay, (at around $35) and dump them/stack them/place it on the center of the tarp (max total cost $0 to $80) A few handfuls of black dirt should be tossed into the mix to provide plenty of Mesophilic bacteriafootnote.

You then raise up all the edges of the tarp to tie them all together (up above) to create a giant "airtight and watertight bag" which will enclose everything. It will resemble a really large, tied-closed garbage bag when you are done! But first there are three pipes that need to be placed in the very center, standing vertically. One is a short 4" PVC pipe will provide the air/oxygen needed by the bacteriafootnote, to the upper part of the inside of the bag, with a small blower. A second long 4" PVC pipe extends all the way down to near the bottom of the interior of the bag, to allow the removal of the carbon dioxide created in the decomposition (pushed out by the air forced into the bag by the blower). A small water supply pipe should be provided so that you could add any extra water needed by the bacteriafootnote (due to water vapor being exhausted in the larger pipe just mentioned).

Also in that bundle can be sensors for digital thermometers and a digital hygrometer (humidity) (so you can accurately know what is going on inside the bag).

Once all the edges of the tarp are securely attached to the bundle of tubes, and any gaps are sealed, it is pretty much in operation! If wet grass is used, water may not need to be added, but if dried bales are used, a lot of water must be added to get everything soaked inside the bag. It is beneficial to even have a puddle of water in the bottom of the bag.

The fiberglass or other insulation is then placed so that it surrounds the entire bag, on all sides and the top. This creates at least an R-19 level of insulation on all sides of the tarp/bag.

This simple and crude Version 1 allows the bacteriafootnote to quickly get the entire inside of the bag up to their desired 130°F to 150°F. Some experimental runs have gotten up to that 130°F internal temperature within two days! The heat generated gets the entire pile up to those temperatures, which then also makes the surface of the tarp/bag be at that temperature.

This crude Version 1 does not have any organized provision to be able to direct heat to other parts of a house. Heat would make its way through the insulation to heat the basement around it, and the heat from the warmed basement would rise and heat the floors of the rooms above it, thereby providing much of the needed heat for the house above. It is possible to somewhat control the amount of heat given off by removing or adding insulation around the bag. It IS also possible to get heat out of the 150°F exhaust gases, whether by a heat exchanger or just directly, although the latter would cause massive increases in the humidity of the basement and probable water condensation on the basement walls.

This very crude version would contain around 1500 pounds of material to be decomposed, which contains roughly 13 million Btus of chemical energy in it. It is clear that the heat created cannot really get lost anywhere, so most of that heat should therefore provide heating for that basement. (There is a small amount of the heat which leaves in the 150°F exhaust, but that airflow rate is quite slow and the total heat loss there is relatively small.)

This crude version is not intended as a long-term heating system for modern homes, but mostly as a rather inexpensive arrangement where you can prove to yourself how well it works! (In Third World countries, it might represent a quick and simple and inexpensive long-term heating system.) You could either use free cut grass and your leaves or buy $35 or $70 of straw or hay from a local farmer, and spend another $130 or so for insulation and PVC pipe, for a grand total cost of around $130 to $200 (max) for this whole thing. Since its size is such that it should supply around 1/4 of your winter heating bills, this experiment should save you maybe $400 in natural gas or $500 in heating oil. Not bad for "an experiment!"

The major drawback of the Version 1 approach is that the entire bag needs to be rolled around every day or so, to allow all the clumps of material that form inside to be tumbled about and broken up, so that all can more easily receive the air/oxygen you provide. Without the rolling/tumbling, the process still works but not as efficiently, and some anaerobic decomposition could occur, possibly generating unpleasant smells.

HeatGreen 2 - Approximately a Bedroom-Sized Building!

This is a far more elegant version than the above, which is intended to have the existing house wall thermostat turn the house circulating blower on and off (much like it already does for the summer fan function), to distribute the warm air throughout the house, and it only will do that when the thermostat calls for additional heat.

We will describe here an arrangement that will generally resemble a (separate) conventional small, bedroom-sized frame-built building. It will be highly insulated and it will include several other unique features. There are many variations from this specific plan possible! This general theme has an entire air chamber surrounding the actual (sealed) decomposition bin, which then provides that amount of warm air which is blown into the house rooms by the existing furnace blower, primarily using existing furnace ducting (with some additional ducting needed). It enables the standard (existing) house wall thermostat to control that blower and therefore provides very accurate control of the temperature of the house. Occupants should not even know that the house was being heated by anything other than the old conventional fossil-fuel-burning furnace.

It is made of common, locally available materials. It is sturdier than normal small buildings, partly because it has to be able to contain and support around 16,000 pounds of material in its bin! The floor structure will therefore be made of 2x8 or heavier lumber, while the side walls will be made of 2x6 lumber (to contain the needed insulation). The top will again be 2x8, mostly so that even more insulation can be used there.

NOTE: There are actually two structures here. You have to make the inner one (the bin) absolutely airtight! (this is the equivalent to the airtight, watertight bag discussed above in Version 1). Inside the bin, the conditions will be extremely hot and extremely humid, where virtually anything will quickly disintegrate and decompose (which is actually the whole idea!) By making that bin absolutely airtight, you will be able to keep the moisture/humidity inside the bin, so that the space outside the bin will become hot but actually have extremely low relative humidity! (It is where a conventional humidifier would be installed.) This being the case, the wood construction of the outer building and the conventional insulation will be fine and will last a long time. However, if you should leave even a small path for humid air to get out of the bin into that space, the entire structure could quickly disintegrate as well. You do not want that to happen!

The instructions to build this version are in a separate web-page at HeatGreen Home Heating System Version 2, 4 public3/globalzm.html

HeatGreen 3a - the High-Performance, Mechanized Version

The instructions to build this version are in a separate web-page at Alternative Green Furnace - Non-Fossil-Fueled - Construction High-Performance HeatGreen Home Heating System Version 3a public3/globalzl.html

Our research is actually starting to suggest that this version has some real advantages over the others presented here, as well as being fairly small, about the size of an upright piano.

HeatGreen 4 - For Hot-Water or Hydronic Heating

The exact same (Version 2) structures would be built, except less space is needed surrounding the bin in the building, as airflow will not be pushed through this area. Instead, a water tank or equivalent is placed inside the bin, either hung from the top or resting on the top of the pile of organic material. The fact that the bacteriafootnote cannot create temperatures above around 150°F allows an interesting approach! I have done some experiments using lengths of 4" PVC (Schedule 40) pipe and a lot of elbows, to make a zig-zag "tank" of PVC! Ten feet of that pipe holds about 7 gallons of water, so six ten-foot lengths and a dozen elbows can make a 40+ gallon water heating tank that will never rust or corrode. (The ends have reducers so that standard 1/2 inch or 3/4 or 1 inch pipe connections can be made to it). This sort of PVC hot water heating tank works fine for either hydronic hot water heating or domestic hot water heating!

The instructions to build this version are in a separate web-page at HeatGreen Home Heating System Version 2, 4 public3/globalzm.html

This entire system could be built underground! A standard concrete basement-type structure could be made (but smaller), with the domestic hot water version essentially being about the size of an old rainwater cistern. Standard blue foam insulation can then be glued to the walls and floor, four inches thick for R-20 insulation. A sturdy metal panel should then be laid on the floor to reduce the damage to the foam of the moving of the bin. Protection of the foam on the walls is advisable as well. The bin would then be a metal bin slightly smaller than the available space, and with provision for being lifted by a cable hoist. Such a bin could then be lifted out of the underground chamber for cleaning (the bin is then not too heavy as most of the weight has decomposed by then). It can then be lowered back down and filled while in place. The secure, gasketed lid must then be installed, and then the insulated roof of the structure can be replaced to close it all up.

You can probably see that there are an immense number of variations possible in using this system!

An interesting aspect of the way the decomposition process occurs is that the Thermophilic bacteriafootnote can decompose cellulose, fat, proteins and most other complex carbohydrates. In some cases, after the Thermophilic phase ends, there is then new "simpler" organic materials for the Mesophilic bacteriafootnote to again go after! So even after the peak temperature phase, a follow-up Mesophilic phase generally again occurs.

Even though plastics are technically hydrocarbons, bacteriafootnote generally do not do well with most plastics, and you can mess up the decomposition process if scraps of plastic are in the pile. Paper is fine, even excellent. See any good source on Composting for further ideas!

There is a wide range of organic materials which is ideal for this process, all of which is normally considered annoying trash which needs to be disposed of! Consider the following energy contents, remembering that we have generally been using a very conservative energy content of glucose as around 6,900 Btu/pound:

sawdust8,660 Btu/pound
corncobs9,300 Btu/pound
coffee grounds10,000 Btu/pound
wheat straw8,500 Btu/pound
rice straw6,000 Btu/pound
cattle manure7,400 Btu/pound
bagasse8,390 Btu/pound

An interesting possibility is related to the fact that (Thermophilic) bacteriafootnote also decompose virtually all petroleum compounds. It is tempting to wonder if adding a small amount of used motor oil might both safely discard that material but also get extensive energy from it. However, since that is "Fossil Fuel" it would very slightly contribute to new carbon dioxide in the atmosphere. Not much, but a little! It would certainly be a simple and productive way to dispose of used motor oil, which is now still an environmental problem. It also happens that used motor oil contains around 18,000 Btu/pound of energy, an attractive possible energy source. Another possible energy source might some day be discarded automotive tires, which contain about 16,400 Btu/pound of energy in them, although bacteriafootnote tend to take a longer time to decompose tires. Only Thermophilic bacteriafootnote are able to do that, and they seem really only effective if the tires were first shredded, which is a complication. Still, that seems an attractive possible energy source, from items which are currently considered a waste disposal annoyance.

If you should become a fanatic regarding maximizing the decomposition process, you will learn about carbon-to-nitrogen-ratio, which can make life wonderful for the bacteria. You will learn about Brown and Green organic materials, which we do not see cause to discuss here.

There are also entirely different processes that occur if the decomposition is done without sufficient air/oxygen. In that anaerobic decomposition, the process is always slow, and there are often foul-smelling gases produced. The up-side of anaerobic decomposition is that Methane gas is produced in significant quantity, which can be collected and compressed and used for a variety of things that the core system cannot accomplish (such as providing CNG to power vehicles). However, if you are properly doing our intended aerobic decomposition, with moderately close C-N ratios, there should be virtually no smell created, and you will achieve amazing efficiency and heat production.

There is another interesting possible benefit of this system. Carbon dioxide has a density that is much higher than air or oxygen, around 1.5 times as great. Our decomposition chamber has very little air flow inside it. This suggests that the generated carbon dioxide should tend to settle down to near the bottom of the chamber. This suggests an interesting additional benefit! Say that the exhaust tube was installed where its open end was rather low in the chamber. It would then be possible to intentionally collect a high concentration of carbon dioxide.

These devices can each produce around 47 cubic feet of carbon dioxide every hour. It cannot be pure carbon dioxide but is limited by Dalton's Partial Pressures to around 4.4% of the air. This indicates that there could be around 1,100 cubic feet of air saturated with carbon dioxide which accumulates near the bottom of the bin every hour, air which has a carbon dioxide content of around 110 times that which exists in the natural atmosphere (44,000 ppm rather than 380 ppm). The reality of this system design is that the intended airflow is generally around 2.5 times this, which makes the local concentration of carbon dioxide around 40 times the natural concentration.

So say that the exhaust pipe of the HG device was connected with appropriate hose or pipe to send the exhausted gases into a nearby greenhouse. We would now be sending that supply of carbon dioxide rich and extremely humid and decently hot air into that greenhouse.

There have been thousands of research experiments which have shown that virtually all plants grow far better, faster and larger in an atmosphere of excess carbon dioxide. For example, Chen, K., G.Q. Hu, and F. Lenz, in 1997, (published in a German Journal) found that strawberry plants (fragraria x ananassa Duch. cv. "Elsanta") grown in 1995 and 1996 had remarkable improvements in an atmosphere of excess carbon dioxide! For the two-month growth season, those strawberry plants were constantly in atmospheres of 300, 450, 600, 750, and 900 ppm CO2. (The highest of these was around three times natural concentration, with the first being relatively near natural). They found that flowering and fruit ripening started earlier and lasted longer where the higher carbon dioxide was present. Second blooms generally also developed. Fruit productivity was enhanced by increased pedicel number per plants, fruit setting per pedicel, fruit size, and dry matter content of the fruits. They found that the average fruit yield was (considering the 300 ppm as 100% yield): 450 ppm gave 170%. 600 ppm gave 370%. 750 ppm gave 460%. 900 ppm gave 510% yield!

Five Times the Amount of Strawberries from the same plants!

They found that fruit quality was improved as well, and the total sugar accumulation in the fruits, especially sucrose, was increased and that titratable acid content was reduced. Essentially five times as much fruit which all tasted better, all wonderfully desirable results!

This seems to suggest that if this discarded carbon-dioxide-rich air is sent into a nearby greenhouse, where the carbon dioxide concentration might be increased to three times natural, maybe five times as much fruit and vegetables might be grown from the same plants!

Note that the carbon-dioxide-rich air provided to the greenhouse is also around 150°F so that it can even provide natural heating for the greenhouse, reducing the need for artificial heating! Finally, it is also extremely humid air, which greenhouse plants thrive on!

Thousands of other research experiments have been performed regarding a wide range of plants, which have all had similar results. Even crops like wheat and soybeans, and trees like cherry and spruce and white oak, have similar growth benefits.

Yet another possible Green benefit from this system!

You might note that this combined system actually collects the carbon dioxide that is naturally generated anyway, and then it allows those greenhouse plants to remove it from the atmosphere!

Making Electricity

Cynics might complain that this system can only produce heat in the 150°F range, while conventional Fossil Fuels can generally create flames in the 3,800°F (natural gas, others comparable). They might say that it could be useful for heating domestic hot water, and heating living spaces (as presented in these articles) but that it could never be useful beyond that. I suspect that would be wrong. Some new approaches to technology would certainly be needed, but it seems clear that many other uses, possibly even on an industrial scale, might be possible. A first thought is noting that if a steam engine is operated in a partial vacuum (3 PSIA), water naturally boils at 141.4°F, well within the capability of this HG system to continuously produce. Having the HG system constantly powering such a steam engine could permit an immense number of new benefits. That steam engine could drive an alternator to produce electricity. It could turn a shaft to power water pumps or compressors or many other types of mechanisms. There are also obvious possibilities based on the Rankine and Brayton Cycles.

There are also some existing technologies, such as those based on the Seebeck Effect (discovered in 1821) which are thermoelectric generation. Semiconductor materials seem capable of decent potential efficiency levels, even at these very low temperatures, but new research would probably be required. If that is pursued, the system might directly produce electricity as a by-product of its normal operation.

And More!

This concept can be applied in a thousand different ways, depending on local conditions and availability of materials. The actual requirements (of a Version 2 or 4) are: (1) a reasonably airtight chamber that includes substantial thermal insulation; (2) a bin or chamber inside that which is also airtight which contains nearly any assortment of organic materials; (3) a supply of water within this bin; (4) a few handfuls of black dirt for a supply of needed bacteriafootnote; and (5) a provision for a rather small airflow through the bin, to provide oxygen and to remove carbon dioxide.

This could be created above ground or in the ground. In a remote Third World location, the Version 1 seems especially appropriate, where bales of straw or piles of leaves might be used as the insulation, or many other locally available materials. The chambers should be resistant to rats and larger animals chewing through, either to get to food scraps or to a heated location during a winter. A thermometer is very useful because there is a common tendency to cause too great an airflow through the bin, which then does not allow the material to get up to the most effective operating temperature. Also, given the extreme amounts of heat energy which can get generated, overheating and killing the Thermophilic bacteriafootnote can occur without knowledge of the temperature actually within the decomposing material.

This concept has only very recently been invented (February 2007). We hope that people will try variations of what we have described and will later e-mail us regarding any potential variations or improvements, and the actual results achieved. If a thousand people each do this during this coming winter (08-09) and the next (09-10), we think we may be able to rapidly greatly refine the system.

We are figuring that those first thousand people who make these will each have slightly different configurations, or they will have tossed in different organic materials. Some will discover brilliant insights in the process. It may actually turn out to be a wonderful thing if some bacon grease is included, or food scraps, or a small amount of used motor oil! No one will really know until someone tries such things! If this sounds potentially exciting, I think it is, because if you happen onto some awesome variation, this site can enable millions of others to also benefit from your findings!

Alternative Green Water Heater - Non-Fossil-Fueled HeatGreen - A Simple and Non-Fossil-Fueled Water Heater (which you can make, which will also eliminate that $200 you spend every year for heating water!)
Additional applications of this amazing concept seem to keep appearing. This one might be a dumb one, though! Bear with me regarding a very incomplete thought!

We note that the "high performance" version of this system (Version 3a, the tumbling one) produces an easy 45,000 Btu/hr to heat a home and has experimentally shown to produce about double that, around 90,000 Btu/hr. We also note that 2,544 Btu/hr is the same as one horsepower of power. See where this is going? That fairly simple unit can constantly produce around 45,000 / 2,544 or over 17 horsepower! And it has been shown to produce over 35 horsepower. Granted that it is as simple heat and not as mechanical power. But given that we have millions of active minds in our country, maybe someone can figure out a way to efficiently convert that "low grade heat" into mechanical power???

So, just before bedtime, you take your car to a store to get a "bin" filled with bales of a high-performance variation of this decomposing material. Noting that we have already done some experiments with standard mowed lawn grass, where just 24 hours after being cut, it was already impressively producing heat from bacterialfootnote decomposition, say that someone discovers even faster ways to get this process rolling. So you get your (5?) compressed bales of this organic material of maybe 200 pounds total weight. We learned above that each pound of the organic material contains at least 8,000 Btu of chemical energy in it, so we are talking 1.6 million Btus of chemical energy total (in a fairly small bin). For comparison, a gallon of gasoline contains around 126,000 Btu of chemical energy, so we are talking here of the equivalent of around 13 gallons of gasoline. Starting to see why thing seems interesting?

It really does not seem to be much of a stretch to think that the 200 pounds of material that you put in your bin might be able to completely decompose in say, 12 hours. After all, in-vessel Composting already nearly accomplishes that, certainly in 24 to 48 hours! So we would have 200 pounds of material decomposing in 12 hours which is about 17 pounds per hour. That is around 155,000 Btu/hr or the equivalent to 61 horsepower. That may not represent sports car type of power, and it would tremendously depend on whether an efficient way to convert that heat energy into mechanical energy could be found, but we are here discussing driving for 12 hours, at highway speed, (where a medium sized vehicle generally requires around 40 horsepower (mechanical) to push its way through the air and against tire friction), all potentially from a bin full of cut lawn grass???

Yes, a bin that can hold 200 pounds of this stuff would be much larger than a car's gas tank, but still! This is an approach that involves no Fossil Fuels and therefore no global warming effects! And there would certainly be that delay of some hours while the rather slow decomposition process was working, to build up enough stored energy for you to actually drive somewhere the next morning!

Now, it may not be possible to actually do this! During that night while you slept, it would be necessary for the bacteriafootnote to totally go berserk in generating heat, and then somehow that heat would have to be captured and saved for when you wanted to drive somewhere. Could anyone find some very unusual bacteriafootnote that could work that fast? Or, could some really ideal mixture of decomposing materials be found where the effect is fast enough? Like in a compressed, Swiss-cheese structure where oxygen could get everywhere fast enough? Could someone find some way to efficiently collect and save and store that much heat? Hard to say! But it certainly seems like an interesting idea to think about! IF someone actually comes up with something like that, every vehicle on the planet would soon be built to use that method. Somebody probably has an opportunity to get fairly famous!

As to capturing and storing the heat, we mentioned above the Seebeck Effect and the possibility of a low pressure steam engine as being possible ways to produce some amount of electricity from this general effect. Neither of those is probably able to convert more than a few percent of the heat generated into electricity, though, so the idea of using electrical batteries might be a non-starter. But there are an immense number of very creative people out there (maybe including you) and someone might find a way to accomplish this process!

There are products on the market today which can operate fairly efficiently, but which need to use around twice the temperature differential that these devices can create. So the technology is certainly available. Unfortunately, those products are extremely expensive, and unless their cost drops dramatically, using a HeatGreen system to produce electricity may not be very realistic.

By the way, such an approach would almost certainly completely end the problem of smog in cities, and nox pollution would also no longer occur.

Above, we mentioned briefly the possibility of generating electricity with this method. It might have seemed that we were referring to a TINY amount of electricity. With current technologies, that might be an accurate view. But we have an upright-piano-sized device that easily creates 45,000 Btus/hr and has been shown to be able to produce double that. One watt of electricity is equal to 3.412 Btus/hr of power. In other words, we can easily constantly produce 45,000 / 3.412 or over 13,000 watts of heat energy! (Your home probably averages less than 2,000 watts of electrical consumption.) We are talking about a serious energy source! This is not the 20 watts or 100 watts which are produced only during bright sun by photovoltaic cells!

However, it is true that no present technology is remotely efficient at capturing low-grade heat to convert it into electricity. But it sure seems to me to be worth giving a lot of thought to!

The house-heating and hot water heating work great, and they have extremely high overall efficiency. That might not be possible with the idea of trying to convert that low-grade heat energy into either electricity or motive power. The reason is that there is something called the Carnot Cycle Efficiency, which is believed to always apply to all "thermal processes". Unfortunately, low-grade heat sources have extremely low Carnot Efficiencies (around 11% for this situation). This situation may therefore not allow the "efficient conversion" of those 40 or 60 horsepower of thermal energy discussed above into other forms of energy. But, the incentive seems to be there, so maybe someone can find some method of conversion that does not have the Carnot Cycle limitations. Note that the Carnot Cycle is actually a statement of the Second Law of Thermodynamics, which should indicate that it is very reliably true! A vehicle propulsion system where only 4 to 6 horsepower would be available might not be very attractive! But an electricity generation system which converted 11% of 13 kilowatts would provide a family with a constant supply of around 1.4 kilowatts of electric power, 24 hours each day, which does seem very attractive, even complying with Carnot Cycle Efficiency. Better yet, the remaining 89% of that low-grade heat energy could probably then still go to heating the home and domestic hot water. An interesting possibility!


Say that you really do not want to go to the inconvenience of collecting all your cut grass and leaves. Most modern Americans probably will not want to do such things! So they might want to buy the material put into the device.

A 60 pound bale of straw or hay contains around 550,000 Btus of chemical energy in it. Depending on how efficiently you get your process to work, you may get anywhere between 300,000 and 500,000 Btus of heat energy out of that (depending on the stirring, the reliable supply of oxygen to each bacterium, the reliable supply of water for each bacterium). You would need to ask someone to evaluate your house insulation and size to estimate the "hourly house heat loss" for some low temperature, and multiply it by 24 for a really cold day in February.

Depending on how cold your climate is and the size and condition of your house, that day may realistically require around 1,000,000 Btus of heat for that complete day. That could mean anywhere between 2 and 3 bales would "disappear" during that very cold day.

Want to now guess at how many bales like that you will need for an entire winter to totally heat the house?

The information provided in these web-pages indicates that the standard-sized HG 3a is designed to be able to contain a maximum of around 400 pounds of material. (That would be around 7 of those 60 pound bales, around 3.5 million Btus of chemical energy.) And that that amount should provide complete house heating for two to four complete days, depending on how cold the weather is.

You probably should not have hundreds of bales of very dry hay stacked inside your garage! For one thing, the information here notes that IF any of it ever gets damp, where it can start its own "composting" it can produce both sufficient heat to ignite the hay bales (which would burn astoundingly fast and dangerously) and also that standard composting tends to sometimes be anaerobic where it can create both methane gas (which can be dangerous) and other gases which smell bad.

Regarding this storage subject, please note that many farmers have stored hundreds of bales of hay or straw in a barn, and a rainstorm somehow dampened some of the bales, which created the rapid heat production which we (later) intend to encourage to heat our houses, but many farmers have found that the dampened bales can create such enormous heat that the rest of the bales caught fire and burned the entire barn down in a matter of minutes! So be very careful with your stored bales, to make sure that none of them could get dampened! (until you choose to dampen one or more after you have put them in your HG device to intentionally produce heat!)

Yes, buying bales of straw or hay represents a way to save most of the heating bills for a winter. But these pages emphasize simply asking a lot of people (neighbors and relatives!) to bring over their bags of "yard waste" (cut grass and leaves). That will work until they realize the value of that material and decide to keep it for themselves!

The volume of material that needs to go into the HG 3a is pretty large, even for just two or three days of serious (whole house) heating on really cold days, and particularly for an entire winter. The Version 2 or 4 (giant-sized) is quite large in order to contain all the winter's needs in one loading, but that also indicated the total amount of material that will be needed. Even more if your process is less than ideal regarding tumbling, airflow and water flow.

So you may have trouble with where you could possibly store all the winter's needs. I see a wonderful solution to this!

I truly believe that "lawn care companies" have an ideal situation! They already cut massive amounts of grass and collect a lot of leaves, but now have to dispose of them. If they have a place to store them and dry them, they could set up a winter business where they would deliver the seven bales (maybe bales of cut lawn grass or leaves) each few days and even load them into the HG 3a unit, charging each homeowner maybe $300 or $500 for the entire winter. The homeowner then would not have to worry about handling anything or storing anything, and they would have heat that was essentially identical to what they now have.

A small lawncare company does not do anything in winter now. So they have no income then. Say that each employee could service four homes per hour or 30 per day. On average, they should only need to visit each house each four or five days during the winter, so that employee should be able to easily service around 150 homes. If they charged $500 for the entire winter (which is a lot better for the homeowner than the $2,000 winter heating bills that many people now have, so their service would be extremely popular!) that employee would bring in 150 * $500 or about $75,000 in extra business (during a season when they normally now have zero income!)

The point is this: The homeowner only had to spend a few hundred to build or buy an HG 3a unit, and can then know that the entire winter's heating will be provided by a maximum cost of $500, probably 1/4 of what they are now used to paying and Fossil Fuel heating costs are definitely rising; and a lot of small businesses can have an additional income of around $75,000 for each employee.

An additional point is that the Lawn Care business already gets tons and tons of cut grass and leaves! There is no cost to them regarding having to buy it! A material that they now have to "dispose of" (involving time and maybe cost) now becomes a valuable product to sell!

How many such "lawn care businesses" could be supported in this way? A lot! all! In the US and Canada, there are roughly 150 million homes and business buildings. One million employees, each servicing 150 of them, would have full time work, where there is no such work available now!

Employment for a million people, and really well-paid employment!

And where do those jobs actually come from? From people who do not want to pay foreign governments $2,000 each winter for Fossil Fuels. Instead, those people enthusiastically will pay local people $500 instead. It is a win-win-win-win situation!

Now, there will be some people who will want to "bag their own grass and leaves", and thereby even save that $500 cost. Fine! The reality is that most people are too lazy to do that, and nearly all homeowners would rather pay the $500! But if people have access to a lot of grass/leaves/straw/hay/weeds, yes, they can even "save all 100% of their heating bills".

It is somewhat like when people buy a woodstove to "heat their home". Many do, for the first winter. But then their enthusiasm for all that woodcutting and stacking and drying and carrying fades by the second winter. By then they know that the woodstove they bought probably burned up 8 cords of wood if they tried to "seriously" heat their home. Since each cord is around two tons of wood, they now know that they would need to cut and stack and dry and carry around 30,000 pounds of wood for the next complete winter! As a result, most woodstove owners spent a lot to buy a stove which they actually only use for one winter! Even healthy and strong people generally do not look forward to cutting/stacking/drying/carrying 30,000 pounds of wood every winter, and they then choose to instead pay their $2,000 heating bills!

It seems likely that most people will have enthusiasm to look forward to one year of loading a HG system. But it seems extremely likely that nearly all may be willing to pay some local company that $500 to "take care of all the details" in all years after that!

The HG 3a IS more efficient than any woodstove, but still a total of around 15,000 pounds of material needs to get put into it in a complete winter of completely heating a medium sized house.

I am tempted to believe that most people who discover this system will want to keep their home at 75°F in winter, just because they can. Yes, that would require loading more material into the HG 3a unit, for that extra level of comfort. Each person can make personal choices about that.

Personal note: In June 2014, I ended my seven year research experiment with my HG 3a and disassembled it. As a scientist, I wanted to know if there had been any significant damage done to the structure I had designed. Specifically, I had long wondered whether the Thermophilic bacteria might be decomposing the plastic parts of the waterproofing tarpaulin I had used to line the inside of the chamber. That turned out not to be a significant issue, but over the years, I had thrown some nails and other sharp pieces of metal into the chamber with the grass and leaves, and a few tiny tears had developed in the tarp, where I needed to repair them to stop some water seepage out of the unit.

I also had designed a non-rotating version of the HG-3 unit, which I call the HG-3h unit, which I wanted to start testing for a few winters. This unit still uses a motor, but instead of tumbling the entire chamber with its 400 pounds of contents, it drives an internal vertical auger, which constantly digs wet material from the bottom of the stationary chamber and lifts it to drop it on top of the pile. One main reason I now favor this approach is that I hope to be able to rely on decomposing Used Motor Oil, which then will both dispose of a waste product (which now has to be paid for) and also produce massive amounts of house heat from organic liquids. The tumbling of the HG 3a made that a problem, along with my experiments of cooking food inside the tumbling chamber!

But unrelated problems (medical) have delayed me getting the HG 3h ready. So I had an amusing incident recently! After seven years of not using the nearly new conventional house furnace, I recently turned it on! I had not realized how much dust had accumulated in the ducts and in the furnace over seven years! It was temporary, but still a nasty smell!


Such a Huge Amount of Free Energy? If your (extended) pace is around three feet, this means a circle of around 180 feet radius around you. That is an area of around 2.3 acres. If one acre of that happens to be lawn, meadow, forest, garden or even weeds, then it is well established (and fully discussed in the second and third of our presentations on Global Warming, the ones which include the biochemistry and thermodynamics) that that acre generally grows over 9 tons of organic matter, due to photosynthesis, every year. Our biochemistry discussions also explain (through molal analysis) that each pound of the resulting cellulose and other organic materials contains around 9,000 Btu of chemical binding energy due to those processes. Therefore, we have around 19,000 pounds of material, each of which contains 9,000 Btus of chemical energy, so therefore we have around 170,000,000 Btus of chemical binding energy in those leaves, grass blades, weeds, and branches. All plants use up additional energy which was also extracted from sunlight by photosynthesis, for their own processes of living, and which we are not discussing here.

The 170,000,000 Btus of chemical energy is simply sitting there! It no longer has any function regarding the biological operation or development of the living plants of which it used to be part. It is simply sitting there, as the organic materials are waiting to (slowly) naturally decompose, which releases all that chemical binding energy as heat energy. It can be equally accurately described as 67,000 horsepower-hours of (heat) energy or 50,000 kilowatt-hours (again, of heat energy). They all mean the same thing. They are not mechanical energy or electrical energy, or even heat energy, but rather a potential energy of the chemical binding energies of the atoms in the complex carbohydrate molecules in organic materials. However, the first Law of Thermodynamics told us that Energy must be Conserved, that is that such energy cannot simply disappear. It must continue to exist, but it can be changed in form from one type of energy to another, as long as the total energy does not change. All real processes do not have perfect efficiency when changing from one form to another, where all the energy that might appear to be lost had simply been converted to heat energy, possibly as frictional losses or radiation or convention losses.

In this case, that 67,000 horsepower-hours of energy gets released very gradually and slowly, spread out over that entire one acre area. But still, during that six-month period (4,400 hours), there is an average of over 15 horsepower continuously released, although it occurs very irregularly in reality. That can also be described as being an average of around 11 kilowatts for that entire six month period! This seems impossible since no one has ever noticed it! After all, we don't have to run across the yard in winter because it is so hot!

We can see why this is the case if we consider it as the 170 million Btus of energy. Again, this is released over 4,400 hours, so we would have an average of around 39,000 Btu/hour. Keep in mind that this is normally spread out over the area of an acre, or 43,560 square feet. This is therefore around 0.9 Btu per square foot per hour, a rather small amount when we stick space heaters under our desks which produce 5,000 Btu/hr! Is there any wonder that no one has ever noticed a heat source which is less than 1/5000 of that of a lowly electric space heater?

The actual natural heat production is very irregular, as the Mesophilic bacteriafootnote which operate at the lower temperatures are very affected by the temperature of the material they are trying to break down for energy. On intensely cold days, there is extremely little activity, while on milder Spring days, substantial decomposition occurs.

Note that the technology which we have developed generally relies on entirely different types of bacteriafootnote, the so-called Thermophilic ones. They are far more efficient at the process but they also require an environment which is around 125°F to 150°F. This means that they rarely get a chance to do much, except on really hot sunny summer days when inside a pile of animal dung or similar compost materials. This actually explains why the thick and effective insulation is so centrally important in the operation of this concept. If there should ever be found some bacteriafootnote which thrive on even warmer temperatures, like 170°F to 180°F, it figures that they might be even more rapid in accomplishing these functions. If there were ever to be any future in using this approach for vehicle fuels, that might a likely way to accomplish the rapidity needed in the energy release.

For the record, the first Footnote in the first Global Warming presentation of this series discusses that around 893 watts of incoming sunlight arrives at each square meter of area (due to the Solar Constant and the Earth's Albedo). Our one acre is around 4010 square meters, so the acre can receive a total of around 3.6 * 106 watts of sunlight. Due to day and night and other geometric effects, the actual daily average is 1/4 of this or 9.0 * 105 watts. Multiplying by 86400 seconds in a 24-hour day, this is 7.7 * 1010 watt-seconds, or 2.15 * 107 watt-hours each day. If we consider a growing season in the middle US to be half a year or 182 days, that means that roughly 3.9 * 106 kilowatt-hours (kWh) of sunlight energy had arrived on that acre during a single growing season.

We have just determined that the actual plant growth absorbs around 50,000 kWh of energy into the chemical binding energy of the organic molecules. We have just mathematically confirmed that the photosynthesis process has around 1% overall thermal efficiency (50,000 / 3.9 * 106). The second Footnote in our second Global Warming presentation provides the complete analysis of where all the thermal efficiency losses are in the natural photosynthesis process.

Carbon Footprint There are an assortment of different things that can be meant by this popular phrase. Unless you know the rules used in generating a specific number, the number might not have much meaning!

Published records showed that the US emitted a total of 5.498 billion tons of actual carbon dioxide in 1998. (of a world total of 18.96 billion tons.) There were then around 300 million of us in the United States, so we might fairly say that we each, man, woman and child, caused the emission of around 18.33 tons of carbon dioxide, (5498/300) so one might say that each American (including little babies!) had a Carbon Footprint of over 18 tons (of carbon dioxide) in 1998. However, the US changed policy some years back and decided to only count the carbon atoms in that carbon dioxide, which makes for a somewhat smaller number! Atomic Carbon is actually about 27% of carbon dioxide by weight. By only counting the carbon atoms, they can therefore also correctly say that each American was responsible for about 5 tons of actual carbon atoms that were sent into the atmosphere (but all of them were as carbon dioxide atoms, and not one was ever a loose carbon atom! So the reason for the change of description appears to have been entirely political, just to make it appear that the US was not sending such extraordinary amounts of carbon dioxide into the atmosphere! In any case, there are some people who use this peculiar method of description to say that we Americans are each responsible for a Carbon Footprint of around 5 tons each year. There are also people who see that 82% of that carbon dioxide production is directly due to the combined usage of motor vehicles and the creation of electricity, and those people ignore our heating our homes and only say that we each are responsible for about 15 tons of carbon dioxide or 4 tons of carbon equivalent. You can see that there is quite a range of numbers which can correctly be applied here. Also, I am not so sure that tiny babies should be blamed for this, and it might be more correct to describe a household footprint for the 75 million families (of usually two parents and about two children) in the US. In that case, the appropriate number for a household carbon footprint might be described as being either around 70 tons of carbon dioxide or 20 tons of carbon equivalent.

Given that we are the ultimate beneficiaries of all the electricity generated in the US and of all the vehicle traffic, but that we also primarily heat our homes and buildings with the rest, a case can be made that charitability of reducing the numbers might be inappropriate!

For this presentation, we use a very conservative 45 tons of carbon dioxide or 12 tons of carbon equivalent per family.

The 12 ton number essentially ignores the actual carbon dioxide and instead talk about the (somewhat hypothetical) MMTCe number. That number does not even refer to any real chemical, but instead tries to use the quantity of Elemental carbon that is present. We feel that saying that each American family is responsible for a 45 ton Footprint of carbon dioxide is most correct and descriptive.

We mention that, in 1998, official reports describe that the US sent 1,494.0 MMTCe of carbon dioxide into the atmosphere. This would be 1,494 million metric tons which we might try to allocate among the 300 million of us that then were Americans. Dividing, we then confirm that each American had a Carbon (equivalent) Footprint of 1,494/300 or about 5 tons of carbon. However, the reality is no different! A family with two children would still be blamed for 4 * 5 or 20 tons of elemental carbon, or the equivalent of 20 * (44/12) 73 actual tons of carbon dioxide, each year. We have used very conservative figures in the 45 actual tons that we discuss here.

These comments are meant to confirm that the figures for numbers of tons added to the atmosphere in the table above are accurate, as they agree with other ways used to describe our CO2 emissions.

We can look at this from an individual perspective. A single family in a medium-sized home in a temperate climate might burn 700 gallons of heating oil per winter (easily confirmed by looking at previous bills.) Each gallon of either heating oil or gasoline weighs around 6 pounds, so this is around 4200 pounds of heating oil burned each winter. We see note 14 note 9 that each pound of it burned creates 3.12 pounds of carbon dioxide which is released into the atmosphere. Multiplying (4200 * 3.12) we see that this representative family therefore produces 13,100 pounds of carbon dioxide due to heating their home each winter, which we generally refer to as seven tons.

If that same family had burned natural gas instead, they may have burned 1000 Therms of gas during that winter. This is around 100,000 cubic feet of natural gas burned, which weighs around 5100 pounds (one pound of natural gas is around 19.75 cubic feet). We see note 15 that each pound of natural gas burned creates 2.75 pounds of carbon dioxide which gets released into the atmosphere. Multiplying (5100 * 2.75), we see that the representative family produces 13,900 pounds of carbon dioxide due to heating their home each winter, which we generally refer to as seven tons.

Burning Coal There are many different types of coal that exist, and they each have different chemical compositions. However, the coals that are most usable as fuels tend to have at least 80% carbon in them Our coal is therefore about 80% Carbon.

A pound of Coal therefore contains very close to 0.8 pound of carbon in it. If it is burned extremely completely, we can assume that all that carbon will combine with oxygen from the air to form carbon dioxide. Using atomic weights again, we see that carbon dioxide is 12 + 16 + 16 or 44, since oxygen is 16. When the 12 weights of carbon is burned (oxidized), it therefore forms 44 weights of carbon dioxide. We had 4/5 pound of carbon to start with so we multiply 4/5 * 44/12 to get 44/15 or 2.93 pound of carbon dioxide formed for each pound of Coal burned.

We can examine the official Reports for any year, regarding the consumption of Coal in that year. Such Reports tell us that 2.148 * 109 metric tons of oil equivalent of coal was burned in the year 2000 (worldwide). Such Reports give oil-equivalent numbers, because different kinds of coal have rather different energy contents. If we take oil to contain around 19,500 Btus per pound and an average coal to contain around 13,000 Btus per pound, we then have to multiply by 1.5 (or 19,500/13,000) to get the actual amount of tons of coal burned. Therefore we have 3.22 * 109 metric tons of coal burned in 2000.

We just determined that each pound of that coal creates 2.93 pounds of carbon dioxide when it burns. Therefore, in the year 2000, the amount of coal that was burned produced 3.22 * 2.93 * 109 metric tons or 9.44 * 109 metric tons of carbon dioxide.

This year, the massive increases in coal burning in China to produce electricity and to power their many factories indicates that at least 4.5 * 109 metric tons of coal is being burned, which is creating about 13.2 * 109 metric tons of carbon dioxide.

Production of Electricity from Coal The United States currently produces around 51% of the electricity it uses by burning coal. The coal heats water into steam, which is sent into steam turbines, which spin giant alternators that create the alternating current electricity that we use.

Consider starting with two pounds of coal, which we just discussed contains 2 * 14,000 Btus of chemical energy in it, 28,000 Btus total. In electrical energy terms, that is about 8.2 kWh of available chemical energy.

As the two pounds of coal is burned, we learned above that 2.93 * 2 pounds or 5.86 pounds of carbon dioxide is formed.

It is not possible to burn coal with perfect efficiency, and it is also not possible to transfer all the heat created into forming steam from water. The mechanisms of the steam turbine and the electrical and magnetic fields of the alternator are also not of perfect efficiency. The net effect of all of this is that roughly 30% of the original energy in the coal is converted into actual electricity. (Nuclear powered plants are slightly more efficient, at around 32%, and fuel oil powered and natural gas powered plants are slightly less efficient, generally around 28% or 29%.) Much of the remaining 70% is intentionally thrown away by cooling towers or equivalent equipment.

In any event, we now have 30% of the 28,000 Btus from our two pounds of coal as actual electricity, or 8,400 Btus, which is 2,46 kWh of actual electricity produced. This electricity then has to go through transformers to raise its voltage up high enough to be reasonably efficient in high-voltage transmission lines. It then is sent through such high-tension wires. The standard design rules are to design such lines so that 90% of the electricity put in one end of a 60-mile long stretch will come out the other end. Ten percent of the electricity is therefore lost as resistance heating by the wires, in every sixty miles of such lines. Once in a city, more transformers are used to lower the voltage to around 12,000 volts, for the lines that are up and down every street on utility poles. Then there is another transformer near your house that lowers that voltage even more to the 240 volts and 120 volts that you actually use in your house.

It turns out that all those transformers and especially all those wires have quite a bit of losses in them. There is yet another big problem! Electric power plants must constantly produce more electricity than is actually called for at any moment! Just in case millions of people all decide to make toast at the same instant! Or for the more common situation where millions of people get home from work and all turn on their central air conditioners. This results in really large losses of available electricity (which cannot be stored in any way as the alternating current that arrives at our houses.)

For an average home at an average distance from an electric powerplant, roughly 60% of the electricity put in the wires at the powerplant gets wasted as resistance heating and magnetic losses (much of which is lost as that electricity which must be created but will never be used), so only around 40% of that electricity produced and put into the wires actually gets to our houses!

The overall efficiency of the entire coal-fired electricity generation and distribution system is therefore 30% * 40% or around 12%! Thirteen percent is a more commonly used value, really a disappointingly low percentage!

Since we are tracking the electricity from our two pounds of coal, we now find that only around 8,400 * 40% or 3,360 Btus of electricity actually gets to our house! And since 3,412 Btus is equal to one kiloWatt-hour, we have now found that each one kWh of electricity available at our homes required that two pounds of coal was burned up in that distant coal-fired powerplant. Saying this another way, for every kiloWatt-hour of electricity that you use up, there is about 5.86 pounds of carbon dioxide that gets added to the atmosphere at that distant coal-fired electric power plant.

If your own monthly electric bill shows a modest usage of 500 kWh, that means that you are responsible FOR 500 * 5.86 or 2930 pounds of carbon dioxide that month, about a ton and a half. In the year, that is around 18 tons of carbon dioxide. (This usage is not usually counted in the Carbon Footprint estimates!)

This burning of coal to produce electricity is the primary reason that coal is consumed in the US, so it accounts for most of the annual totals discussed above regarding coal burning.

An additional fact can be presented here. We just learned that, if the electricity was provided by a coal-fired electric plant, we can realistically expect to cause 5.86 pounds of carbon dioxide to have been released into the atmosphere for each kiloWatt-hour of electricity that we receive at our homes. There is enormous popular excitement these days regarding basing a future of transportation on either battery-powered or hydrogen-powered vehicles. Neither actually contains any power of its own, and it must receive power from some external source, which is generally house electricity.

We can use the information we just learned to find how much carbon dioxide that an electric powerplant releases in order to duplicate the power in one gallon of gasoline. There are actually two different ways we can do this. (1) We know that a gallon of gasoline contains around 126,000 Btus (or around 37 kWh) of chemical energy in it. We just determined that two pounds of coal burned in an electric plant can be expected to provide around 0.98 kWh of electric power at our home. That electricity that arrives at our home then needs to go through a battery charger and then into a chemical lead-acid battery, with both processes having less than ideal efficiencies. The result is that around 0.64 kWh of electric energy is actually put into the batteries (from those two pounds of coal that were burned). When an electric vehicle or hybrid then uses that electricity stored in the batteries, the efficiency of the batteries are again in effect, as well as wiring, the electric motors, gears, shafts, and other mechanisms to actually make the tires of a vehicle rotate. The result is that around 0.42 kWh of actual electric energy gets used to move the vehicle.

It turns out that modern gasoline-powered vehicles are generally around 21% efficient. Therefore, of the 37 kWh of chemical energy in a gallon of gasoline, only around 7.7 kWh actually gets used to move the vehicle. We can therefore easily see that (7.7 kWh / 0.42 kWh) or about 18.5 groups of two-pounds of or 37 pounds of coal would need to be burned (at the distant electric power plant) to duplicate the actual useful benefit in a gallon of gasoline! We can also see that 18.5 groups of 5.86 pounds of carbon dioxide would be released from that coal burned, or 108 pounds of carbon dioxide! This all applies to Electric Vehicles (battery-power), Hybrid Vehicles that plug into house electricity, or (future) Hydrogen-powered Fuel Cell vehicles. A terrible situation!

We note (and calculate in a different Footnote) that an existing gasoline-powered vehicle only releases around 18.3 pounds of carbon dioxide into the atmosphere for each gallon of gasoline burned. We find it rather bizarre that politicians and the public considers it to be Green to consider electric battery-powered vehicles and hybrids, where they directly cause 108 pounds of carbon dioxide to be released into the atmosphere, six times as much as the gasoline-powered vehicle causes in the first place! Is that Green???

If, instead, a battery-powered or hydrogen-powered or hybrid vehicle was used, we see that 108 pounds of carbon dioxide has to be released from the distant electric powerplant in order to provide the necessary electricity! Much of this is due to the fact that there are so many separate processes involved, and each of those processes each are less than 100% efficient. It all adds up!

So even though all the publicity and the excitement is around battery-powered vehicles being so Green, and that future hydrogen-powered vehicles will be the same, the fact that they have to receive their re-charging electricity from distant coal-fired electric powerplants actually makes them horribly un-Green! Around six times as much carbon dioxide must be released into the atmosphere due to any electric powered vehicle than if the vehicle had had a standard gasoline engine! This is not to praise gasoline engines, as they are terribly inefficient! But the public is quite mislead by the people who are aggressively promoting electric vehicles and future hydrogen vehicles! The central claim on which people would be willing to buy such vehicles turns out to not be true (because the source of the electricity is from burning coal). If the electricity could be gotten from solar or wind or hydroelectric, fine, they would be excellent! But it turns out that the practical matters in both solar PV operation and in wind turbine operation, make them very unlikely to actually ever provide all the miraculous claims made for them, at least for probably the next 50 years. We must remember that 51% of all the huge amount of electricity used in the United States is produced by burning coal.

The fact that the electric powerplant is many miles away seems to be the reason that people feel they can ignore whatever happens there! But it turns out that really bad things regarding carbon dioxide occur any time we want any electricity, whether for powering a vehicle or for making toast!

Burning Petroleum, Gasoline, Heating Oil, Jet Fuel, Diesel, Etc There are many different types of petroleum which is pumped out of the ground. They all are primarily Carbon in composition, with the best varieties tending to be chemically around 85% Carbon. A pound of crude petroleum or its distilled products, gasoline, diesel fuel, home heating oil, jet fuel, kerosene, etc, therefore contains very close to 0.85 pound of carbon in it. If it is burned extremely completely, we can assume that all that carbon will combine with oxygen from the air to form carbon dioxide. Using atomic weights again, we see that carbon dioxide is 12 + 16 + 16 or 44, since oxygen is 16. When the 12 weights of carbon is burned (oxidized), it therefore forms 44 weights of carbon dioxide. We had 0.85 pound of carbon to start with so we multiply 0.85 * 44/12 to get 3.12 pound of carbon dioxide formed for each pound of Petroleum burned.

We can examine the official Reports for any year, regarding the consumption of Petroleum in that year. Such Reports tell us that 3.54 * 109 metric tons of petroleum in the year 2000 (worldwide). If the Reports give the consumption in barrels instead, 7.33 barrels equals one metric ton. We just determined that each pound of that petroleum creates 3.12 pounds of carbon dioxide when it burns. Therefore, in the year 2000, the amount of petroleum that was burned produced 3.54 * 3.12 * 109 metric tons or 11.04 * 109 metric tons of carbon dioxide.

This year, we are burning up around 30 billion barrels of petroleum, which is about 4.1 * 109 metric tons of petroleum, which is creating about 12.8 * 109 metric tons of carbon dioxide.

Combustion of Gasoline We can also consider gasoline by the gallon instead of the pound. One gallon of gasoline weighs around 6 pounds. Around 5.0 pounds of that is due to the carbon atoms in the complex carbohydrate molecules. When the Carbon atoms oxidize/burn they combine with oxygen from the air to form carbon dioxide. The ratios of the amounts are 12 grams of carbon combines with 2 * 16 grams of oxygen to form 44 grams of carbon dioxide. This means that we end up with 44/12 times as much carbon dioxide as we had carbon to start with (if the combustion is complete). In our case, starting with 5.0 pounds of carbon, the gallon of gasoline therefore forms about 5.0 * 44/12 or about 18.3 pounds of carbon dioxide.

Burning Natural Gas Natural Gas is nearly all methane gas. That is chemically CH4. From Chemistry, we know that the Carbon atom has an atomic weight of 12 and each Hydrogen has one. The Methane molecule therefore has a total atomic weight of 16 (12 + 4). It is therefore 12 / 16 or 3 / 4 or 75% Carbon.

A pound of Natural Gas therefore contains very close to 3/4 pound of carbon in it. If it is burned extremely completely, we can assume that all that carbon will combine with oxygen from the air to form carbon dioxide. Using atomic weights again, we see that carbon dioxide is 12 + 16 + 16 or 44, since oxygen is 16. When the 12 weights of carbon is burned (oxidized), it therefore forms 44 weights of carbon dioxide. We had 3/4 pound of carbon to start with so we multiply 3/4 * 44/12 to get 11/4 or 2.75 pound of carbon dioxide formed for each pound of Natural Gas burned.

We can examine the official Reports for any year, regarding the consumption of Natural Gas in that year. Such Reports tell us that 2.438 * 1012 cubic meters of natural gas was burned in the year 2000 (worldwide). We use the density of Natural Gas (Methane) (0.7168 gram/liter) to calculate that this amount is 1.74 * 109 metric tons of Natural Gas. We just determined that each pound of that natural gas creates 2.75 pounds of carbon dioxide when it burns. Therefore, in the year 2000, the amount of natural gas that was burned produced 1.74 * 2.75 * 109 metric tons or 4.81 * 109 metric tons of carbon dioxide.

This year, we are burning up about 3 trillion cubic meters of Natural Gas, which is about 2.1 * 109 metric tons of Natural Gas, which is creating about 5.9 * 109 metric tons of carbon dioxide.

Carbon Cycle Nature constantly recirculates Carbon throughout the biosphere. Using the energy from sunlight, plants perform the process of Photosynthesis to create new plant materials. Whether this is done in trees, bushes, grasses weeds or other land plants, or in algae or seaweed or other water plants, the process is generally always the same. Carbon dioxide from the air is chemically combined with water from the soil (or sometimes directly from the air) to create complex carbohydrate molecules. The Photosynthesis process usually proceeds by this chemical reaction:

(6) CO2 + (6) H2O + energy from sunlight C6H12O6 + (6) O2

The complex carbohydrate is a chemical called glucose. A wonderful side effect is that oxygen is also given off, which we are then able to breathe!

Plants then use that glucose and chemically convert it into all the thousands of other organic carbohydrate molecules on which all life depends.

In Biochemistry, we know that to form "one mole" of glucose, the plant needs to absorb 686 Kilo-calories of sunlight energy. A mole is the total atomic weight (in grams) of any chemical molecule, so we can add up the 6 Cs (each weight 12) and 12 Hs (each weight 1) and 6 Os (each weight 16), to find that a mole of glucose is 180 grams. We therefore know exactly how much sunlight energy was required to create any amount of new plant material created from the carbon dioxide and water.

Here is a simplified presentation of the basic biochemistry involved. It shows the arrangement of the chemical bonds in the glucose molecule, as well as the actual bond strengths of each of the bonds, which shows the theoretical basis for the 686 kCal of energy that is absorbed from sunlight during photosynthesis and released again during decomposition or respiration.

graphic from John W Kimball

If you add up the total weights of the six carbon dioxide molecules that were used up, you can see that they weigh a total of 264 grams.

The Carbon Cycle is a cycle because, when the plants later die, they then naturally decompose (or which also occurs during a common process called Respiration) (with the help of many types of bacteriafootnote) back into carbon dioxide and water (or water vapor, the same thing). After an entire Cycle has occurred, the amount of Carbon has not significantly changed.

On the entire Earth, there is roughly 100 billion tons of Carbon involved with the Carbon Cycle each year. We notice that it accounts for 72 (6 * 12) of the weight of the glucose's 180 weight. Since the Carbon Cycle intimately involves the production of glucose, we can therefore know that 180/72 * 100 billion or about 250 billion tons of glucose is produced each year by all the world's plants. In the process, they remove about 264/72 * 100 billion or around 350 billion tons of carbon dioxide from the Earth's atmosphere (and create 192/72 * 100 billion or 260 billion tons of oxygen which we might then breathe!).

So, briefly, the Carbon Cycle, the total plant life on the Earth, removes a large amount of carbon dioxide from the atmosphere.

However, those plants all eventually die, and when they do, that 250 billion tons of glucose decomposes. The decomposition process then uses up the 260 billion tons of oxygen again and the glucose decomposes back into the original 350 billion tons of carbon dioxide and the original 150 billion tons of water.

No net advantage or disadvantage occurs regarding amounts of carbon or carbon dioxide or anything else occurs due to the Carbon Cycle. In fact, the exact same weight (mass) of each of the Elements always exists, around 100 billion tons of carbon, 17 billion tons of hydrogen and 400 billion tons of oxygen. The chemical processes of photosynthesis and decomposition just change the appearance as different atoms combine in different molecular combinations.

The entire Carbon Cycle and the entire field of Biochemistry is more complicated than this simplified discussion might indicate. But the basics are all exactly as described here.

The Carbon Cycle therefore recirculates all the carbon and carbon dioxide that is available, without ever increasing the amounts, except briefly by chemically converting the carbon dioxide (gas) into and out of parts of plants. When we burn Fossil Fuels, it is entirely different! We are digging up chemicals which are mostly carbon which have been buried for many millions of years. That carbon had therefore been out of the atmosphere and the Carbon Cycle for those millions of years. The fact that we dig/pump it all up and then burn it, means that we are doing what is called oxidation:

C + O2 which gives CO2.

This is new carbon dioxide which could not have been created except for the fact that we chose to burn the Fossil Fuels. Once we have created this new carbon dioxide, it is essentially around forever (at least millions of years) and it is now free in the Earth's atmosphere.

Where the Carbon Cycle never increased the total carbon dioxide in the atmosphere (except temporarily), our burning of Fossil Fuels IS increasing the total carbon dioxide in the atmosphere, on an accumulating quantity and essentially with forever consequences.

Solvay Process Of the hundreds of chemical methods we know of which can remove carbon dioxide from air, one seems to be far more promising than any others. It was invented around a hundred fifty years ago.

The Solvay Process is still used around the world, related to production of salt, glass, soap, detergent and centrally sodium carbonate. It uses salt water (brine) and ammonia and carbon dioxide to produce sodium bicarbonate and ammonium chloride. As carbon dioxide is bubbled up through the ammoniated brine solution, sodium bicarbonate is formed, which is insoluble and which then sinks to the bottom of the tank. When the ammonium chloride is later treated with lime, the ammonia is recovered and can then be put back in the first step of the process. The only requirements are therefore saltwater, carbon dioxide and lime. THAT is the reason the Solvay process might be a credible possibility, that really only seawater and limestone are needed, both of which are available in very large quantities. The carbon dioxide becomes chemically combined in the sodium bicarbonate, which is insoluble and it therefore precipitates (settles) to the bottom. The carbon dioxide is therefore removed from the air.

There are around 70 Solvay Process plants still in operation around the world. Unfortunately, the total amount of carbon dioxide removed from the Earth's atmosphere each year is very tiny when compared to the scale of our problems. All those industrial plants combined only process about 30 million tons of sodium carbonate each year, indicating that only around 15 million tons of carbon dioxide gets removed from the atmosphere each year. For even the Solvay Process to be of a large enough scale, around 2000 times as many Solvay Process plants would be required to process even just the 30 billion tons of carbon dioxide that we are adding to the atmosphere each year. That would require around 140,000 industrial factories each fully operating the Solvay Process.

All of the hundreds of other chemical processes that we know about which can remove carbon dioxide from air, have far less chance of accomplishing the scale that would be needed.

This Year's World Carbon Dioxide Estimate The set of three footnotes regarding coal, petroleum and natural gas have calculated that this year (2008), we are creating and releasing 13.2 billion tons; 12.8 billion tons; and 5.9 billion tons; respectively, of carbon dioxide, for a total of around 31.9 billion tons.

The United States generates around 1/4 of this world total each year.

We can describe this quantity in several different ways. By applying the density of carbon dioxide (1.977 gram/liter) we can see that a ton of carbon dioxide gas takes up about 1010 cubic meters of volume. Multiplying, we see that we have about 32.3 * 1012 cubic meters of carbon dioxide. That 32 trillion cubic meters is the same as about 1,140 trillion cubic feet!

(These presentations sometimes use a "more conservative" value of 400,000,000,000,000 cubic feet, as a value that is an average over the past twenty years or so.)

There are some people who get on TV and claim that they will simply collect the carbon dioxide and "sequester" it inside the Earth, such as in caves. They have clearly never done the math! If a volume of 1,140 trillion cubic feet were as a sphere (ball), it would be about 40 kilometers in diameter or 25 miles in diameter. It would have a volume of about 7,800 cubic miles! All the known caves in the world only have a total volume of a few cubic miles!

This analysis only even refers to what we do in a single year, and we will add just as much again next year, and again the year after!

Your Heating Bills If we consider an average-insulated, medium-sized (1600 sf) house in a climate like Chicago, it is likely that around 100 million Btus of Fossil Fuels are consumed each winter. Roughly 80 MBtu for heating the house and the other 20 MBtu to heat the domestic hot water.

Your furnace and hot water heater likely has a label on the side which describes the expected annual consumption of the fuel. For example, gas-fired water heaters probably have a label that indicates that the range of available water heaters use between 238 and 273 Therms of gas each year. Since each Therm is 100,000 Btus, this means that the water heater will use between 23.8 million and 27.3 million Btus of gas each year.

Heating systems are generally not especially efficient, and these amounts are generally consumed even though that house probably actually has a winter heat loss of around 50 MBtu. Most is lost up a chimney and during non-use due to a pilot flame.

If we assume that 100 MBtu total usage of fuels, we can examine the characteristics of the different fuels.

Note that these figures are for a house in a fairly cold climate, and we have sometimes mentioned lower average amounts (7 tons) which accounted for many houses in milder climates.

Bacteria The word bacteria has many wrong understandings. Yes, there are some types of bacteria which cause bad effects to other living things such as humans. However, most people seem to not know that your large intestine primarily controls water balance and to obtain certain vitamins by the action of a type of bacteria called Escherichia coli, generally referred to as E. coli.

People also do not realize how small bacteria are! If you collected about 30,000,000,000,000 (thirty trillion) average bacteria, they would collectively only weigh a single ounce!

Only a small fraction of the types of bacteria cause any diseases. Most bacteria only attack organic material only after it is dead. Were it not for bacteria that decompose animal waste matter and the bodies of dead animals and plants, these materials would accumulate almost indefinitely.

These are the thousands of types of bacteria that we refer to regarding the HG devices. These bacteria use many available organic materials (such as carbohydrates) as food, and using available oxygen, the bacteria oxidize the organic molecules, which means that they break the complex molecules down into simpler molecules, while ultimately combining the carbon atoms from the molecules with oxygen atoms (oxidizing) to create carbon dioxide. The bacteria are persistent and creative in finding every carbon atom available, so this process can be incredibly efficient, converting virtually all the organic material into eventual carbon dioxide (gas) and water vapor.

This description is regarding their activities when sufficient oxygen is available, so-called aerobic decomposition. There are other types of bacteria which operate where no oxygen is available. They operate rather differently, in processes called anaerobic, where they tend to stop decomposition somewhat earlier, commonly when the carbon and hydrogen atoms have been discarded into the smallest molecules of those two elements, commonly methane gas, CH4. The overall efficiency of anaerobic bacteria is therefore much lower than aerobic, and so we designed the HG devices to operate on aerobic processes, for greatest overall effectiveness of decomposition, and therefore also the greatest amount of heat being released. There can be some useful reasons for intentionally wanting to cause anaerobic decomposition, specifically to create methane gas which might then be collected, compressed and stored for future use. HG devices can be modified for this process, but we still see greatest value in maximizing overall efficiency, and so aerobic decomposition.

Finally, there are different varieties of bacteria which live and thrive best under specific circumstances. We center our attention on two main varieties, often called Mesophilic and Thermophilic. If available organic material is near or below freezing, virtually no decomposition occurs. As temperature rises, the rate of decomposition also increases, as Mesophilic bacteria becomes more active with warmer temperatures. This continues up to around 125°F. Around that temperature, the Thermophilic bacteria, which had been essentially dormant at lower temperatures, become extremely active, and they also attack a much wider range of organic materials. Nearly as soon as Thermophilic bacteria really get going, they can heat the material to greater than 135°F and the Mesophilic bacteria die from excessive heat. After that, only the Thermophilic bacteria remain alive, but they are extremely active in decomposing organic material many times faster than Mesophilic bacteria could do. However, now that only one type of bacteria is still alive, the temperature in the material must be maintained at above 125°F, or else those Thermophilic bacteria will die and the entire decomposition process immediately stops! If and when this occurs, a handful of black dirt can be thrown into the material inside the HG device, to provide new Mesophilic bacteria so that the process can begin again, and then eventually convert to the action of the Thermophilic bacteria once the material has again become warm enough.

This presentation was first placed on the Internet in March 2007.

Energy-Related presentations in this Domain:

Self-Sufficiency - Many Suggestions A thorough presentation
Global Warming - The Physics of the Process. (June 2004, June 2008)
Global Warming and Climate Change - The Physics (June 2004, Feb. 2007)
Alternative Green Water Heater - Non-Fossil-Fueled HeatGreen - A Simple Water Heater, HG3a (biodecomposition) (March 2007)
Alternative Green Furnace with no Fire - Non-Fossil-Fueled HeatGreen - A Simple, Home Heating Furnace, HG3a (biodecomposition) (March 2007)
Solar Heating - Low-Tech Active System Low-tech, low cost approach (April 2007)
Heat and Cool a House Naturally, without a Furnace or Air Conditioner (1977, Nov. 2000)
Energy Supplies of the World - Petroleum, Coal, Gas, Uranium. Oil, Natural Gas, Uranium supplies and consumption (May 2010 Report)
Asphalt Pavement - Black Surfaces and Sunlight Environmental Effects of Asphalt Pavements, Roofs, and Parking Lots (August 2007)
Earth Spinning Energy - Perfect Energy Source From the Earth's Spinning (1990, Nov. 2002)
Earth's Spinning - Perfect Energy Source (1990, Dec. 2009)
Tornadoes - The Physics of How They Operate. Tornadoes, including How they Form. A potential energy source (Feb. 2000, May 2009)
Electricity - Unlimited Source of Solar by an Artificial Tornado. Tornadoes, including How they Form. A potential energy source (Feb. 2000, May 2009)
Survival Ark - 60-Acre Hexagonal Artificial Island, Floating Communities for Survival For Sealevel Rising (July 2008)
Electric Power Plants - Climate Effects
Global Warming Effects of Carbon Dioxide
Hydrogen as a Fuel for Vehicles. (August 2003)
Solar Heated House NorthWarm Totally 100% Solar Heated House - Version 1 (1979)
Solar Cells Photovoltaic Cells, PV, Electricity from Sunlight (Jan 2002)
200 mph, Safe, Self-Driving Cars, Trucks, Economical 200 mile per hour TRANS Super-Efficient Transportation System (invented in 1989)
Electric Cars, Hybrid Cars, the Physics Battery-Powered, Hybrid Cars and Hydrogen-Powered Vehicles (April 2006)
Wind Power, Wind Energy, Practical Windmills Practical Wind-Generated Electricity (Residential, some Watts) (1975 and April 1998)
Tower Windmills and Electricity, Modest Efficiency Practical Large-Scale Wind-Generated Electricity, 1200 KiloWatts (Community, a thousand homes) (a million construction jobs and 12,000 MegaWatts of electricity Nationally) (June 2007)
Earth Energy Flow Rates due to Precessional Effects (63,000 MegaWatts of Energy) (Sept 2006)
Power Plant Wastes - Productive Usage of Nuclear Waste. Productive Disposal of Nuclear Power Plant Wastes (1980s, Sept 2005)
Conserving Energy - Methods and Processes
Energy Storage - Methods - Efficiencies Various Methods
Solar Energy - How Much Energy Comes From the Sun
Sun and Stars - How the Sun Works - Nuclear Fusion. Creating Light and Heat
Energy Inventions - Many Forms of Energy Supplies. Related to Energy Crises
Solar Energy - Generating Electricity From solar, wind or other sources nearly 24 Hours a Day (2001, tested 2003)
Solar Energy - Generating Electricity, Improved A Unique Method of Using Solar Energy to Generate Electricity (late 2010)
Alaska Pipeline - Alyeska - Physics. Pipeline Local Climate Effects (August 2005)
Home Air Conditioning Natural, Green and free! (1978, December 2000)
Hybrid Vehicle - An Improvement. An Entirely Different Approach to a Hybrid Vehicle (1992, May 2008)
Woodburning Furnace - JUCA Fireplace, Woodstove - JUCA Super-Fireplaces (designed 1972, manufactured 1973 on, still not matched)
Burning Wood for Heating - The Physics. Wood as a Heating Fuel (published 1978)
North Pole is Heating Very Fast. Faster than anywhere else on Earth.
Global Warming and Climate - Possible Solutions
Aerodynamic Lift - How Airplanes Fly. Bernoulli Effect, Reaction Lift (April 2003)
Efficient Airfoil Flight - Active Surface - TURCAN. Greatly Reducing Turbulence and Drag for Aircraft and Airfoils, TURCAN (summer 1998)
Construction School for GREEN Technologies. My Concept of a Green Campus (1990, Dec 2008)
Conservation of Angular Momentum - An Exception or Violation. A Violation of the Conservation of Angular Momentum (Sept 2006)
Hurricanes, the Physics and Analysis A Credible Approach to Hurricane Reduction (Feb 2001)
Automotive Engine - A More Efficient Approach. Significant Improvement (2001)
Global Warming - The Politics and Business Why No Leaders Seem to See Urgency in Global Warming
Energy from the Moon - A Version of Tidal Energy Collection. (Artificial Tides) (1998, 2010)
Energy from the Moon - Version of Tidal Energy Collection 2. (Energy Harvesting) (1975, 2010)
Electricity from Solar, Wind, Water, More. Make All Your Own Green Electricity (2001, 2003, 2010)
Woodstove Energy Production and Efficiency, from a Radiant Woodstove (published 1979)
Firewood Ratings. Firewood Info Chart.

This page - - - - is at
This subject presentation was last updated on - -

Link to the Public Services Home Page


Link to the Science Projects Index - Public Service


E-mail to:

Carl W. Johnson, Theoretical Physicist, Physics Degree from Univ of Chicago
This house has had quite an amazing history. The Village of Thornton was the first town incorporated in Illinois, in 1834. Chicago was incorporated 3 years later, in 1837, as a town of 4,000 people. In 1856, this one room school house was built in Thornton. I experimentally proved this in 1965 when I took a piece of the western wall sheathing wood into the University of Chicago for a scientific Carbon-14 radioactive dating test. The University test proved that the trees and logs for this one-room school house had been chopped down in 1855. This first photo below (from March 1946) was taken from the east. At that time, the building was essentially was still the 13'7" by 20'8" one-room school house size it had been built when it was built in 1856. The (east) door through which students entered and left through seen here was from the adjacent (north-south) Jane Street, with the Thorn Creek immediately behind it. About 20 feet further west (right) was the school-house's Outhouse (which my mother called "Martha") In 1871, the huge Chicago fire burned most of the Cook County property records before that. However, this one-room Thornton school-house was used continuously as a school from 1856 through 1904. There are many scuff marks on what is now the hardwood kitchen floor, which show the location of each of the sets of four metal desk legs, which shows that in various years between 1856 and 1904, from six to ten desks (and therefore students) were studying inside this one-room school house. This one-room school-house was not used as a school after 1904, and the building and its 3 city-lot playground land was sold to a young couple. They lived in the small house for 42 years, until they eventually sold it to my parents in March 1946 (for $1200). My father had 4 children, and so he constantly found the need to build more rooms onto it for the next 15 years, until the modern house eventually became the 11-room house which it now is.

So this specific house was actually one of the very first one-room school houses in the United States. I am now considering again making it help solve the Corona-19 virus problem today as a one-room school-house again.

This same one-room school house as it was built in 1856, and used as a one-room school house from 1856 through 1904. .

This same house when it was a One-room Schoolhouse Side view of the 1-room schoolhouse near Chicago


The official Cook County, Illinois Plat Map of Thornton, which includes part of Thorn Creek.

The Cook County Illinois Plat map of Thornton    

Detail of the Official Cook County Plat Map of Thornton.

A portion of the Cook County Plat map of Thornton
This one-room school house has always been in the lot between Hunter Street, Maria Street and Jane Street (lots number 1, 2 and 3). And adjacent to the horseshoe of Thorn Creek.